[1]
|
E. Abreu, W. Lambert, J. Perez and A. Santo, A new finite volume approach for transport models and related applications with balancing source terms, Math. Comput. Simulation, 137 (2017), 2-28.
doi: 10.1016/j.matcom.2016.12.012.
|
[2]
|
G. Albuja and A. I. Ávila, A family of new globally convergent linearization schemes for solving Richards' equation, Appl. Numer. Math., 159 (2021), 281-296.
doi: 10.1016/j.apnum.2020.09.012.
|
[3]
|
C. Aricò, M. Sinagra and T. Tucciarelli, The MAST-edge centred lumped scheme for the flow simulation in variably saturated heterogeneous porous media, J. Comput. Phys., 231 (2012), 1387-1425.
doi: 10.1016/j.jcp.2011.10.012.
|
[4]
|
L. Beirão da Veiga, A. Pichler and G. Vacca, A virtual element method for the miscible displacement of incompressible fluids in porous media, Comput. Methods Appl. Mech. Engrg., 375 (2021), 35pp.
doi: 10.1016/j.cma.2020.113649.
|
[5]
|
B. Belfort and F. Lehmann, Comparison of equivalent conductivities for numerical simulation of one-dimensional unsaturated flow, Vadose Zone Journal, 4 (2005), 1191-1200.
doi: 10.2136/vzj2005.0007.
|
[6]
|
M. Berardi, Rosenbrock-type methods applied to discontinuous differential systems, Math. Comput. Simulation, 95 (2014), 229-243.
doi: 10.1016/j.matcom.2013.05.006.
|
[7]
|
M. Berardi, A. Andrisani, L. Lopez and M. Vurro, A new data assimilation technique based on ensemble Kalman filter and Brownian bridges: An application to Richards' equation, Comput. Phys. Comm., 208 (2016), 43-53.
doi: 10.1016/j.cpc.2016.07.025.
|
[8]
|
M. Berardi, M. D'Abbicco, G. Girardi and M. Vurro, Optimizing water consumption in Richards' equation framework with step-wise root water uptake: A simplified model, Transport in Porous Media, (2022).
doi: 10.1007/s11242-021-01730-y.
|
[9]
|
M. Berardi and F. V. Difonzo, Strong solutions for Richards' equation with Cauchy conditions and constant pressure gradient, Environ. Fluid Mech., 20 (2019), 165-174.
doi: 10.1007/s10652-019-09705-w.
|
[10]
|
M. Berardi, F. V. Difonzo and L. A. Lopez, A mixed MoL-TMoL for the numerical solution of the 2D Richards' equation in layered soils, Comput. Math. Appl., 79 (2020), 1990-2001.
doi: 10.1016/j.camwa.2019.07.026.
|
[11]
|
M. Berardi, F. V. Difonzo, F. Notarnicola and M. Vurro, A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone, Appl. Numer. Math., 135 (2019), 264-275.
doi: 10.1016/j.apnum.2018.08.013.
|
[12]
|
M. Berardi, F. V. Difonzo, M. Vurro and L. Lopez, The 1D Richards' equation in two layered soils: A Filippov approach to treat discontinuities, Adv. Water Res., 115 (2018), 264-272.
doi: 10.1016/j.advwatres.2017.09.027.
|
[13]
|
L. Bergamaschi and M. Putti, Mixed finite elements and Newton-type linearizations for the solution of Richards'equation, Internat. J. Numer. Methods Engrg., 45 (1999), 1025-1046.
doi: 10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G.
|
[14]
|
P. Broadbridge, E. Daly and J. Goard, Exact solutions of the Richards equation with nonlinear plant-root extraction, Water Resources Res., 53 (2017), 9679-9691.
doi: 10.1002/2017WR021097.
|
[15]
|
M. Camporese, E. Daly and C. Paniconi, Catchment-scale Richards equation-based modeling of evapotranspiration via boundary condition switching and root water uptake schemes, Water Resources Res., 51 (2015), 5756-5771.
doi: 10.1002/2015WR017139.
|
[16]
|
A. Carminati, A model of root water uptake coupled with rhizosphere dynamics, Vadose Zone Journal, 11 (2012).
doi: 10.2136/vzj2011.0106.
|
[17]
|
V. Casulli, A coupled surface-subsurface model for hydrostatic flows under saturated and variably saturated conditions, Internat. J. Numer. Methods Fluids, 85 (2017), 449-464.
doi: 10.1002/fld.4389.
|
[18]
|
V. Casulli and P. Zanolli, A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form, SIAM J. Sci. Comput., 32 (2010), 2255-2273.
doi: 10.1137/100786320.
|
[19]
|
M. A. Celia, E. T. Bouloutas and R. L. Zarba, A general mass-conservative numerical solution for the unsaturated flow equation, Water Resources Res., 26 (1990), 1483-1496.
doi: 10.1029/WR026i007p01483.
|
[20]
|
G. M. Coclite, A. Fanizzi, L. Lopez, F. Maddalena and S. F. Pellegrino, Numerical methods for the nonlocal wave equation of the peridynamics, Appl. Numer. Math., 155 (2020), 119-139.
doi: 10.1016/j.apnum.2018.11.007.
|
[21]
|
A. Colombo, N. Del Buono, L. Lopez and A. Pugliese, Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2911-2934.
doi: 10.3934/dcdsb.2018166.
|
[22]
|
A. Coppola, N. Chaali, G. Dragonetti, N. Lamaddalena and A. Comegna, Root uptake under non-uniform root-zone salinity, Ecohydrology, 8 (2014), 1363-1379.
doi: 10.1002/eco.1594.
|
[23]
|
F. Dassi and G. Vacca, Bricks for the mixed high-order virtual element method: Projectors and differential operators, Appl. Numer. Math., 155 (2020), 140-159.
doi: 10.1016/j.apnum.2019.03.014.
|
[24]
|
N. Del Buono and L. Lopez, Direct event location techniques based on Adams multistep methods for discontinuous ODEs, Appl. Math. Lett., 49 (2015), 152-158.
doi: 10.1016/j.aml.2015.05.012.
|
[25]
|
F. V. Difonzo, C. Masciopinto, M. Vurro and M. Berardi, Shooting the numerical solution of moisture flow equation with root uptake: A Python tool, Water Res. Mgmt., 35 (2021), 2553-2567.
doi: 10.1007/s11269-021-02850-2.
|
[26]
|
M. W. Farthing, C. E. Kees and C. T. Miller, Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow, Adv. Water Res., 26 (2003), 373-394.
doi: 10.1016/S0309-1708(02)00187-2.
|
[27]
|
M. W. Farthing and F. L. Ogden, Numerical solution of Richards' equation: A review of advances and challenges, Soil Sci. Soc. Amer. J., 81 (2017), 1257-1269.
doi: 10.2136/sssaj2017.02.0058.
|
[28]
|
T. P. A. Ferré and A. W. Warrick, Hydrodynamics in soils, in Encyclopedia of Soils in the Environment, Elsevier, Oxford, 2005,227–230.
doi: 10.1016/B0-12-348530-4/00377-5.
|
[29]
|
B. H. Gilding, Qualitative mathematical analysis of the Richards equation, Transport in Porous Media, 6 (1991), 651-666.
doi: 10.1007/BF00137854.
|
[30]
|
M. Icardi, P. Asinari, D. L. Marchisio, S. Izquierdo and R. O. Fox, Quadrature-based moment closures for non-equilibrium flows: Hard-sphere collisions and approach to equilibrium, J. Comput. Phys., 231 (2012), 7431-7449.
doi: 10.1016/j.jcp.2012.07.012.
|
[31]
|
K. Kumar, F. List, I. S. Pop and F. A. Radu, Formal upscaling and numerical validation of unsaturated flow models in fractured porous media, J. Comput. Phys., 407 (2020), 21pp.
doi: 10.1016/j.jcp.2019.109138.
|
[32]
|
W. Lai and F. L. Ogden, A mass-conservative finite volume predictor–corrector solution of the 1D Richards' equation, J. Hydrology, 523 (2015), 119-127.
doi: 10.1016/j.jhydrol.2015.01.053.
|
[33]
|
K. Y. Li, R. De Jong, M. T. Coe and N. Ramankutty, Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function, Earth Interactions, 10 (2006), 1-22.
doi: 10.1175/EI177.1.
|
[34]
|
N. Li, X. Yue and L. Ren, Numerical homogenization of the Richards equation for unsaturated water flow through heterogeneous soils, Water Resources Res., 52 (2016), 8500-8525.
doi: 10.1002/2015WR018508.
|
[35]
|
Z. Li, I. Özgen-Xian and F. Z. Maina, A mass-conservative predictor-corrector solution to the 1D Richards equation with adaptive time control, J. Hydrology, 592 (2021).
doi: 10.1016/j.jhydrol.2020.125809.
|
[36]
|
Y. Liu, H. Yang, Z. Xie, P. Qin and R. Li, Parallel simulation of variably saturated soil water flows by fully implicit domain decomposition methods, J. Hydrology, 582 (2020).
doi: 10.1016/j.jhydrol.2019.124481.
|
[37]
|
L. Lopez and S. F. Pellegrino, A space-time discretization of a nonlinear peridynamic model on a 2D lamina, Comput. Math. Appl., (2021).
doi: 10.1016/j.camwa.2021.07.004.
|
[38]
|
L. Lopez and S. F. Pellegrino, A spectral method with volume penalization for a nonlinear peridynamic model, Internat. J. Numer. Methods Engrg., 122 (2021), 707-725.
doi: 10.1002/nme.6555.
|
[39]
|
G. Manzini and S. Ferraris, Mass-conservative finite volume methods on 2-D unstructured grids for the Richards' equation, Adv. Water Res., 27 (2004), 1199-1215.
doi: 10.1016/j.advwatres.2004.08.008.
|
[40]
|
W. Merz and P. Rybka, Strong solutions to the Richards equation in the unsaturated zone, J. Math. Anal. Appl., 371 (2010), 741-749.
doi: 10.1016/j.jmaa.2010.05.066.
|
[41]
|
P. C. D. Milly, A mass-conservative procedure for time-stepping in models of unsaturated flow, Advances in Water Resources, 8 (1985), 32-36.
doi: 10.1016/0309-1708(85)90078-8.
|
[42]
|
K. Mitra and I. S. Pop, A modified L-scheme to solve nonlinear diffusion problems, Comput. Math. Appl., 77 (2019), 1722-1738.
doi: 10.1016/j.camwa.2018.09.042.
|
[43]
|
S. M. Naghedifar, A. N. Ziaei and S. A. Naghedifar, Optimization of quadrilateral infiltration trench using numerical modeling and Taguchi approach, J. Hydrologic Engrg., 24 (2019).
doi: 10.1061/(ASCE)HE.1943-5584.0001761.
|
[44]
|
National Research Council, Basic Research Opportunities in Earth Science, The National Academies Press, Washington, DC, 2001.
doi: 10.17226/9981.
|
[45]
|
I. Neuweiler, D. Erdal and M. Dentz, A non-local Richards equation to model unsaturated flow in highly heterogeneous media under nonequilibrium pressure conditions, Vadose Zone J., 11 (2012).
doi: 10.2136/vzj2011.0132.
|
[46]
|
C. Paniconi and M. Putti, Physically based modeling in catchment hydrology at 50: Survey and outlook, Water Resources Res., 51 (2015), 7090-7129.
doi: 10.1002/2015WR017780.
|
[47]
|
D. F. Rucker, A. W. Warrick and T. P. A. Ferré, Parameter equivalence for the Gardner and van Genuchten soil hydraulic conductivity functions for steady vertical flow with inclusions, Adv. Water Res., 28 (2005), 689-699.
doi: 10.1016/j.advwatres.2005.01.004.
|
[48]
|
D. Seus, K. Mitra, I. S. Pop, F. A. Radu and C. Rohde, A linear domain decomposition method for partially saturated flow in porous media, Comput. Methods Appl. Mech. Engrg., 333 (2018), 331-355.
doi: 10.1016/j.cma.2018.01.029.
|
[49]
|
H. Suk and E. Park, Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated flow in heterogeneous layered porous media, J. Hydrology, 579 (2019).
doi: 10.1016/j.jhydrol.2019.124213.
|
[50]
|
M. D. Tocci, C. T. Kelley and C. T. Miller, Accurate and economical solution of the pressure-head form of Richards' equation by the method of lines, Adv. Water Res., 20 (1997), 1-14.
doi: 10.1016/S0309-1708(96)00008-5.
|