
-
Previous Article
Determining the global manifold structure of a continuous-time heterodimensional cycle
- JCD Home
- This Issue
-
Next Article
Sensitivity analysis for periodic orbits and quasiperiodic invariant tori using the adjoint method
Continuation methods for principal foliations of embedded surfaces
Cornell University, Ithaca, NY 14852 USA |
Continuation methods are a well established tool for following equilibria and periodic orbits in dynamical systems as a parameter is varied. Properly formulated, they locate and classify bifurcations of these key components of phase portraits. Principal foliations of surfaces embedded in $ \mathbb{R}^3 $ resemble phase portraits of two dimensional vector fields, but they are not orientable. In the spirit of dynamical systems theory, Gutierrez and Sotomayor investigated qualitative geometric features that characterize structurally stable principal foliations and their bifurcations in one parameter families. This paper computes return maps and applies continuation methods to obtain new insight into bifurcations of principal foliations.
Umbilics are the singularities of principal foliations and lines of curvature connecting umbilics are analogous to homoclinic and heteroclinic bifurcations of vector fields. Here, a continuation method tracks a periodic line of curvature in a family of surfaces that deforms an ellipsoid. One of the bifurcations of these periodic lines of curvature are connections between lemon umbilics. Differences between these bifurcations and analogous saddle connections in two dimensional vector fields are emphasized. A second case study tracks umbilics in a one parameter family of surfaces with continuation methods and locates their bifurcations using Taylor expansions in "Monge coordinates." Return maps that are generalized interval exchange maps of a circle are constructed for generic surfaces with no monstar umbilics.
References:
[1] |
M. V. Berry and J. H. Hannay,
Umbilic points on gaussian random surfaces, J. Physics A: Mathematical and General, 10 (1977), 1809-1821.
|
[2] |
J. W. Bruce and D. L. Fidal,
On binary differential equations and umbilics, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 147-168.
doi: 10.1017/S0308210500025087. |
[3] |
F. Cazals, J.-C. Faugère, M. Pouget and F. Rouillier,
The implicit structure of ridges of a smooth parametric surface, Comput. Aided Geom. Design, 23 (2006), 582-598.
doi: 10.1016/j.cagd.2006.04.002. |
[4] |
H. Dankowicz and F. Schilder, Recipes for Continuation, Computational Science & Engineering, 11. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
doi: 10.1137/1.9781611972573. |
[5] |
G. Darboux, Leç cons Sur La Théorie Générale des Surfaces et Les Applications Géométriques du Calcul Infinitésimal, Réimpression de la premiéreédition de 1896. Chelsea Publishing Co., Bronx, N. Y., 1972. |
[6] |
W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-78043-1. |
[7] |
A. Dhooge, W. Govaerts and Y. A. Kuznetsov,
MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), 141-164.
doi: 10.1145/779359.779362. |
[8] |
M. P. do Carmo, Differential Geometry of Curves & Surfaces, Dover Publications, Inc., Mineola, NY, 2016, Revised & updated second edition of [MR0394451]. |
[9] |
E. Doedel, H. B. Keller and J.-P. Kernévez,
Numerical analysis and control of bifurcation problems. I. Bifurcation in finite dimensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1 (1991), 493-520.
doi: 10.1142/S0218127491000397. |
[10] |
C. Dupin, Développements de Géométrie, Corcier, Paris, 1813. |
[11] |
W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719543. |
[12] |
J. Guckenheimer, Bifurcations of dynamical systems, In Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., Birkhäuser, Boston, Mass., 8 (1980), 115–231. |
[13] |
J. Guckenheimer,
Dense lines of curvature on convex surfaces, Proc. Amer. Math. Soc., 148 (2020), 3537-3549.
doi: 10.1090/proc/14981. |
[14] |
C. Gutiérrez and J. Sotomayor,
Closed principal lines and bifurcation, Bol. Soc. Brasil. Mat., 17 (1986), 1-19.
doi: 10.1007/BF02585473. |
[15] |
C. Gutiérrez and J. Sotomayor, Periodic lines of curvature bifurcating from Darbouxian umbilical connections, In Bifurcations of Planar Vector Fields (Luminy, 1989), Lecture Notes in Math., Springer, Berlin, 1455 (1990), 196–229.
doi: 10.1007/BFb0085394. |
[16] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations, 2$^nd$ edition, Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993. |
[17] |
M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos, 3$^{rd}$ edition, Elsevier/Academic Press, Amsterdam, 2013.
doi: 10.1016/B978-0-12-382010-5.00001-4.![]() ![]() ![]() |
[18] |
Y. Katznelson and D. Ornstein,
The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, 9 (1989), 643-680.
doi: 10.1017/S0143385700005277. |
[19] |
B. Krauskopf, H. M. Osinga and J. Galán-Vioque (eds.), Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems, Springer, Dordrecht, 2007, Path following and boundary value problems, Dedicated to Eusebius J. Doedel for his 60th birthday.
doi: 10.1007/978-1-4020-6356-5. |
[20] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[21] |
S. Marmi, P. Moussa and J.-C. Yoccoz,
Linearization of generalized interval exchange maps, Ann. of Math. (2), 176 (2012), 1583-1646.
doi: 10.4007/annals.2012.176.3.5. |
[22] |
M. Martens, S. van Strien, W. de Melo and P. Mendes,
On Cherry flows, Ergodic Theory Dynam. Systems, 10 (1990), 531-554.
doi: 10.1017/S0143385700005733. |
[23] |
G. Monge, Sur les lignes de courbure de la surface de l'ellipsoide, In Application de l'Analyse á la Géometrie (5th edition), Bachelier, Paris, 1796,139–160. |
[24] |
M. M. Peixoto,
Structural stability on two-dimensional manifolds, Topology, 1 (1962), 101-120.
doi: 10.1016/0040-9383(65)90018-2. |
[25] |
I. R. Porteous, Geometric Differentiation, For the Intelligence of Curves and Surfaces, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2001.
![]() ![]() |
[26] |
Y. G. Sinaǐ and K. M. Khanin,
Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Russian Math. Surveys, 44 (1989), 69-99.
doi: 10.1070/RM1989v044n01ABEH002008. |
[27] |
J. Sotomayor and C. Gutiérrez, Structurally stable configurations of lines of principal curvature, In Bifurcation, Ergodic Theory and Applications (Dijon, 1981), Astérisque, Soc. Math. France, Paris, 98 (1982), 195–215. |
[28] |
J. Sotomayor and C. Gutiérrez, Configurations of lines of principal curvature and their bifurcations, In Colloquium on Dynamical Systems (Guanajuato, 1983), Aportaciones Mat., Soc. Mat. Mexicana, México, 1 (1985), 115–126. |
[29] |
J. Sotomayor and R. Garcia,
Lines of curvature on surfaces, historical comments and recent developments, São Paulo J. Math. Sci., 2 (2008), 99-143.
doi: 10.11606/issn.2316-9028.v2i1p99-143. |
[30] |
J. Sotomayor and C. Gutiérrez, Structurally Stable Configurations of Lines of Curvature and Umbilic Points on Surfaces, Instituto de Matemática y Ciencias Afines, IMCA, Lima; Universidad Nacional de Ingenieria, Instituto de Matemáticas Puras y Aplicadas, Lima, 1998. |
[31] |
M. Viana,
Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100.
doi: 10.5209/rev_REMA.2006.v19.n1.16621. |
[32] |
E. Zeeman, The umbilic bracelet and the double-cusp catastrophe, In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, Lecture Notes in Math., 525 (1976), 328–366. |
show all references
References:
[1] |
M. V. Berry and J. H. Hannay,
Umbilic points on gaussian random surfaces, J. Physics A: Mathematical and General, 10 (1977), 1809-1821.
|
[2] |
J. W. Bruce and D. L. Fidal,
On binary differential equations and umbilics, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 147-168.
doi: 10.1017/S0308210500025087. |
[3] |
F. Cazals, J.-C. Faugère, M. Pouget and F. Rouillier,
The implicit structure of ridges of a smooth parametric surface, Comput. Aided Geom. Design, 23 (2006), 582-598.
doi: 10.1016/j.cagd.2006.04.002. |
[4] |
H. Dankowicz and F. Schilder, Recipes for Continuation, Computational Science & Engineering, 11. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
doi: 10.1137/1.9781611972573. |
[5] |
G. Darboux, Leç cons Sur La Théorie Générale des Surfaces et Les Applications Géométriques du Calcul Infinitésimal, Réimpression de la premiéreédition de 1896. Chelsea Publishing Co., Bronx, N. Y., 1972. |
[6] |
W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-78043-1. |
[7] |
A. Dhooge, W. Govaerts and Y. A. Kuznetsov,
MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), 141-164.
doi: 10.1145/779359.779362. |
[8] |
M. P. do Carmo, Differential Geometry of Curves & Surfaces, Dover Publications, Inc., Mineola, NY, 2016, Revised & updated second edition of [MR0394451]. |
[9] |
E. Doedel, H. B. Keller and J.-P. Kernévez,
Numerical analysis and control of bifurcation problems. I. Bifurcation in finite dimensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1 (1991), 493-520.
doi: 10.1142/S0218127491000397. |
[10] |
C. Dupin, Développements de Géométrie, Corcier, Paris, 1813. |
[11] |
W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719543. |
[12] |
J. Guckenheimer, Bifurcations of dynamical systems, In Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., Birkhäuser, Boston, Mass., 8 (1980), 115–231. |
[13] |
J. Guckenheimer,
Dense lines of curvature on convex surfaces, Proc. Amer. Math. Soc., 148 (2020), 3537-3549.
doi: 10.1090/proc/14981. |
[14] |
C. Gutiérrez and J. Sotomayor,
Closed principal lines and bifurcation, Bol. Soc. Brasil. Mat., 17 (1986), 1-19.
doi: 10.1007/BF02585473. |
[15] |
C. Gutiérrez and J. Sotomayor, Periodic lines of curvature bifurcating from Darbouxian umbilical connections, In Bifurcations of Planar Vector Fields (Luminy, 1989), Lecture Notes in Math., Springer, Berlin, 1455 (1990), 196–229.
doi: 10.1007/BFb0085394. |
[16] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations, 2$^nd$ edition, Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993. |
[17] |
M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos, 3$^{rd}$ edition, Elsevier/Academic Press, Amsterdam, 2013.
doi: 10.1016/B978-0-12-382010-5.00001-4.![]() ![]() ![]() |
[18] |
Y. Katznelson and D. Ornstein,
The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, 9 (1989), 643-680.
doi: 10.1017/S0143385700005277. |
[19] |
B. Krauskopf, H. M. Osinga and J. Galán-Vioque (eds.), Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems, Springer, Dordrecht, 2007, Path following and boundary value problems, Dedicated to Eusebius J. Doedel for his 60th birthday.
doi: 10.1007/978-1-4020-6356-5. |
[20] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[21] |
S. Marmi, P. Moussa and J.-C. Yoccoz,
Linearization of generalized interval exchange maps, Ann. of Math. (2), 176 (2012), 1583-1646.
doi: 10.4007/annals.2012.176.3.5. |
[22] |
M. Martens, S. van Strien, W. de Melo and P. Mendes,
On Cherry flows, Ergodic Theory Dynam. Systems, 10 (1990), 531-554.
doi: 10.1017/S0143385700005733. |
[23] |
G. Monge, Sur les lignes de courbure de la surface de l'ellipsoide, In Application de l'Analyse á la Géometrie (5th edition), Bachelier, Paris, 1796,139–160. |
[24] |
M. M. Peixoto,
Structural stability on two-dimensional manifolds, Topology, 1 (1962), 101-120.
doi: 10.1016/0040-9383(65)90018-2. |
[25] |
I. R. Porteous, Geometric Differentiation, For the Intelligence of Curves and Surfaces, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2001.
![]() ![]() |
[26] |
Y. G. Sinaǐ and K. M. Khanin,
Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Russian Math. Surveys, 44 (1989), 69-99.
doi: 10.1070/RM1989v044n01ABEH002008. |
[27] |
J. Sotomayor and C. Gutiérrez, Structurally stable configurations of lines of principal curvature, In Bifurcation, Ergodic Theory and Applications (Dijon, 1981), Astérisque, Soc. Math. France, Paris, 98 (1982), 195–215. |
[28] |
J. Sotomayor and C. Gutiérrez, Configurations of lines of principal curvature and their bifurcations, In Colloquium on Dynamical Systems (Guanajuato, 1983), Aportaciones Mat., Soc. Mat. Mexicana, México, 1 (1985), 115–126. |
[29] |
J. Sotomayor and R. Garcia,
Lines of curvature on surfaces, historical comments and recent developments, São Paulo J. Math. Sci., 2 (2008), 99-143.
doi: 10.11606/issn.2316-9028.v2i1p99-143. |
[30] |
J. Sotomayor and C. Gutiérrez, Structurally Stable Configurations of Lines of Curvature and Umbilic Points on Surfaces, Instituto de Matemática y Ciencias Afines, IMCA, Lima; Universidad Nacional de Ingenieria, Instituto de Matemáticas Puras y Aplicadas, Lima, 1998. |
[31] |
M. Viana,
Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19 (2006), 7-100.
doi: 10.5209/rev_REMA.2006.v19.n1.16621. |
[32] |
E. Zeeman, The umbilic bracelet and the double-cusp catastrophe, In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, Lecture Notes in Math., 525 (1976), 328–366. |

















[1] |
V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 |
[2] |
B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835 |
[3] |
Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315 |
[4] |
Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857 |
[5] |
V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263 |
[6] |
Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977 |
[7] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[8] |
Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234 |
[9] |
Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345 |
[10] |
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 |
[11] |
Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74. |
[12] |
Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022050 |
[13] |
Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024 |
[14] |
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 |
[15] |
Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430 |
[16] |
Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199 |
[17] |
Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425 |
[18] |
Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022098 |
[19] |
Lars Olsen. First return times: multifractal spectra and divergence points. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635 |
[20] |
Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]