
-
Previous Article
A novel sensing concept utilizing targeted, complex, nonlinear MEMS dynamics
- JCD Home
- This Issue
-
Next Article
Computation of nonreciprocal dynamics in nonlinear materials
Emergence of quasiperiodic regimes in a neutral delay model of flute-like instruments: Influence of the detuning between resonance frequencies
1. | Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France |
2. | Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France |
3. | Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, UMR 7190, Paris, France |
4. | Escuela de Ingeniería-Instituto de Música, Pontificia Universidad Católica de Chile, Santiago, Chile |
Musical instruments display a wealth of dynamics, from equilibria (where no sound is produced) to a wide diversity of periodic and non-periodic sound regimes. We focus here on two types of flute-like instruments, namely a recorder and a pre-hispanic Chilean flute. A recent experimental study showed that they both produce quasiperiodic sound regimes which are avoided or played on purpose depending on the instrument. We investigate the generic model of sound production in flute-like musical instruments, a system of neutral delay-differential equations. Using time-domain simulations, we show that it produces stable quasiperiodic oscillations in good agreement with experimental observations. A numerical bifurcation analysis is performed, where both the delay time (related to a control parameter) and the detuning between the resonance frequencies of the instrument – a key parameter for instrument makers – are considered as bifurcation parameters. This demonstrates that the large detuning that is characteristic of prehispanic Chilean flutes plays a crucial role in the emergence of stable quasiperiodic oscillations.
References:
[1] |
H. D. I. Abarbanel, Analysis of Observed Chaotic Data, Institute for Nonlinear Science, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0763-4. |
[2] |
R. Auvray, B. Fabre and P.-Y. Lagrée,
Regime change and oscillation thresholds in recorder-like instruments, The Journal of the Acoustical Society of America, 131 (2012), 1574-1585.
doi: 10.1121/1.3672815. |
[3] |
D. A. W. Barton, B. Krauskopf and R. E. Wilson,
Collocation schemes for periodic solutions of neutral delay differential equations, J. Difference Equ. Appl., 12 (2006), 1087-1101.
doi: 10.1080/10236190601045663. |
[4] |
D. A. W. Barton, B. Krauskopf and R. E. Wilson,
Bifurcation analysis tools for neutral delay equations: A case study, IFAC Proceedings Volumes, 39 (2006), 36-41.
doi: 10.3182/20060710-3-IT-4901.00007. |
[5] |
F. Blanc, P. de la Cuadra, B. Fabre, G. Castillo and C. Vergez, Acoustics of the flautas de chinos, Proceeding of 20th International Symposium on Music Acoustics, (2010). |
[6] |
F. Blanc, V. François, B. Fabre, P. de la Cuadra and P.-Y. Lagrée,
Modeling the receptivity of an air jet to transverse acoustic disturbance with application to musical instruments, The Journal of the Acoustical Society of America, 135 (2014), 3221-3230.
doi: 10.1121/1.4874598. |
[7] |
A. Chaigne and J. Kergomard, Acoustics of Musical Instruments, Springer New York, 2016.
doi: 10.1007/978-1-4939-3679-3. |
[8] |
J.-P. Dalmont,
Acoustic impedance measurement, Part Ⅰ: A review, Journal of Sound and Vibration, 243 (2001), 427-439.
doi: 10.1006/jsvi.2000.3428. |
[9] |
J.-P. Dalmont,
Acoustic impedance measurement, Part Ⅱ: A new calibration method, Journal of Sound and Vibration, 243 (2001), 441-459.
doi: 10.1006/jsvi.2000.3429. |
[10] |
J.-P. Dalmont, B. Gazengel, J. Gilbert and J. Kergomard,
Some aspects of tuning and clean intonation in reed instruments, Applied Acoustics, 46 (1995), 19-60.
doi: 10.1016/0003-682X(95)93950-M. |
[11] |
P. de la Cuadra, The Sound of Oscillating Air Jets: Physics, Modeling and Simulation in Flute-Like Instruments, Ph.D thesis, Stanford University, 2006. |
[12] |
P. de la Cuadra, C. Vergez and B. Fabre, Visualization and analysis of jet oscillation under transverse acoustic perturbation, Journal of Flow Visualization and Image Processing, 14 (2007). |
[13] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[14] |
J.-B. Doc and C. Vergez,
Oscillation regimes produced by an alto saxophone: Influence of the control parameters and the bore inharmonicity, The Journal of the Acoustical Society of America, 137 (2015), 1756-1765.
doi: 10.1121/1.4916197. |
[15] |
J.-B. Doc, C. Vergez and S. Missoum,
A minimal model of a single-reed instrument producing quasi-periodic sounds, Acta Acustica united with Acustica, 100 (2014), 543-554.
doi: 10.3813/AAA.918734. |
[16] |
P. G. Drazin, Introduction to Hydrodynamic Stability, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511809064.![]() ![]() ![]() |
[17] |
K. Engelborghs, T. Luzyanina and D. Roose,
Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28 (2002), 1-21.
doi: 10.1145/513001.513002. |
[18] |
K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Technical Report TW-330, Department of Computer Science, K.U. Leuven, Belgium, 2001. |
[19] |
K. Engelborghs and D. Roose,
Smoothness loss of periodic solutions of a neutral functional-differential equation: On a bifurcation of the essential spectrum, Dynamics and Stability of Systems, 14 (1999), 255-273.
doi: 10.1080/026811199281994. |
[20] |
B. Fabre, J. Gilbert and A. Hirschberg, Modeling of wind instruments, Springer Handbook of Systematic Musicology, (2018), 121–139.
doi: 10.1007/978-3-662-55004-5_7. |
[21] |
B. Fabre and A. Hirschberg,
Physical modeling of flue instruments: A review of lumped models, Acta Acustica united with Acustica, 86 (2000), 599-610.
|
[22] |
B. Fabre, A. Hirschberg and A. P. J. Wijnands,
Vortex shedding in steady oscillation of a flue organ pipe, Acta Acustica united with Acustica, 82 (1996), 863-877.
|
[23] |
G. Falkovich, Fluid Mechanics: A Short Course for Physicists, Cambridge university press, Cambridge, 2011.
doi: 10.1017/CBO9780511794353.![]() ![]() ![]() |
[24] |
N. H. Fletcher,
Nonlinear dynamics and chaos in musical instruments, Complexity International, 1 (1994), 106-117.
|
[25] |
J. Gilbert, S. Maugeais and and C. Vergez,
Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation, Acta Acustica, 4 (2020), 27.
doi: 10.1051/aacus/2020026. |
[26] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 2013. |
[27] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[28] |
A. Lefebvre, G. Goudou and G. Scavone, The wind instrument acoustic toolkit, Available from: http://www.music.mcgill.ca/caml/wiat/. |
[29] |
D. H. Lyons,
Resonance frequencies of the recorder (English flute), The Journal of the Acoustical Society of America, 70 (1981), 1239-1247.
doi: 10.1121/1.387136. |
[30] |
C. Maganza, R. Caussé and F. Laloë,
Bifurcations, period doublings and chaos in clarinetlike systems, Europhysics Letters, 1 (1986), 295.
|
[31] |
M. E. McIntyre, R. T. Schumacher and J. Woodhouse,
On the oscillations of musical instruments, The Journal of the Acoustical Society of America, 74 (1983), 1325-1345.
doi: 10.1121/1.390157. |
[32] |
A. W. Nolle,
Sinuous instability of a planar air jet: Propagation parameters and acoustic excitation, The Journal of the Acoustical Society of America, 103 (1998), 3690-3705.
doi: 10.1121/1.423089. |
[33] |
D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, Numerical Continuation Methods for Dynamical Systems, Underst. Complex Syst., Springer, Dordrecht, (2007). 359–399.
doi: 10.1007/978-1-4020-6356-5_12. |
[34] |
L. F. Shampine,
Dissipative approximations to neutral DDEs, Appl. Math. Comput., 203 (2008), 641-648.
doi: 10.1016/j.amc.2008.05.010. |
[35] |
J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey and D. Roose, Manual - Bifurcation analysis of delay differential equations, Available from: arXiv.org/abs/1406.7144. |
[36] |
P.-A. Taillard, F. Silva, P. Guillemain and J. Kergomard,
Modal analysis of the input impedance of wind instruments. Application to the sound synthesis of a clarinet, Applied Acoustics, 141 (2018), 271-280.
doi: 10.1016/j.apacoust.2018.07.018. |
[37] |
S. Terrien, R. Blandin, C. Vergez and B. Fabre,
Regime change thresholds in recorder-like instruments: Influence of the mouth pressure dynamics, Acta Acustica united with Acustica, 101 (2015), 300-316.
doi: 10.3813/AAA.918828. |
[38] |
S. Terrien, C. Vergez, P. de la Cuadra and B. Fabre,
Experimental analysis of non-periodic sound regimes in flute-like musical instruments, The Journal of the Acoustical Society of America, 149 (2021), 2100-2108.
doi: 10.1121/10.0003758. |
[39] |
S. Terrien, C. Vergez and B. Fabre,
Flute-like musical instruments: A toy model investigated through numerical continuation, Journal of Sound and Vibration, 332 (2013), 3833-3848.
doi: 10.1016/j.jsv.2013.01.041. |
[40] |
S. Terrien, C. Vergez, B. Fabre and D. A. W. Barton,
Calculation of the steady-state oscillations of a flute model using the orthogonal collocation method, Acta Acustica united with Acustica, 100 (2014), 690-704.
doi: 10.3813/AAA.918748. |
[41] |
C. Vauthrin, B. Fabre and I. Cossette,
How does a flute player adapt his breathing and playing to musical tasks?, Acta Acustica united with Acustica, 101 (2015), 224-237.
doi: 10.3813/AAA.918821. |
[42] |
M. P. Verge, Aeroacoustics of Confined Jets: With Applications to the Physical Modeling of Recorder-Like Instruments, Ph.D thesis, Technische Universiteit Eindhoven, 1995. |
[43] |
M. P. Verge, B. Fabre, W. E. A. Mahu, A. Hirschberg, R. R. van Hassel, A. P. J. Wijnands, J. J. de Vries and C. J. Hogendoorn,
Jet formation and jet velocity fluctuations in a flue organ pipe, The Journal of the Acoustical Society of America, 95 (1994), 1119-1132.
doi: 10.1121/1.408460. |
[44] |
H. A. K. Wright and D. M. Campbell,
Analysis of the sound of chilean pifilca flutes, The Galpin Society Journal, 51 (1998), 51-63.
doi: 10.2307/842760. |
show all references
References:
[1] |
H. D. I. Abarbanel, Analysis of Observed Chaotic Data, Institute for Nonlinear Science, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0763-4. |
[2] |
R. Auvray, B. Fabre and P.-Y. Lagrée,
Regime change and oscillation thresholds in recorder-like instruments, The Journal of the Acoustical Society of America, 131 (2012), 1574-1585.
doi: 10.1121/1.3672815. |
[3] |
D. A. W. Barton, B. Krauskopf and R. E. Wilson,
Collocation schemes for periodic solutions of neutral delay differential equations, J. Difference Equ. Appl., 12 (2006), 1087-1101.
doi: 10.1080/10236190601045663. |
[4] |
D. A. W. Barton, B. Krauskopf and R. E. Wilson,
Bifurcation analysis tools for neutral delay equations: A case study, IFAC Proceedings Volumes, 39 (2006), 36-41.
doi: 10.3182/20060710-3-IT-4901.00007. |
[5] |
F. Blanc, P. de la Cuadra, B. Fabre, G. Castillo and C. Vergez, Acoustics of the flautas de chinos, Proceeding of 20th International Symposium on Music Acoustics, (2010). |
[6] |
F. Blanc, V. François, B. Fabre, P. de la Cuadra and P.-Y. Lagrée,
Modeling the receptivity of an air jet to transverse acoustic disturbance with application to musical instruments, The Journal of the Acoustical Society of America, 135 (2014), 3221-3230.
doi: 10.1121/1.4874598. |
[7] |
A. Chaigne and J. Kergomard, Acoustics of Musical Instruments, Springer New York, 2016.
doi: 10.1007/978-1-4939-3679-3. |
[8] |
J.-P. Dalmont,
Acoustic impedance measurement, Part Ⅰ: A review, Journal of Sound and Vibration, 243 (2001), 427-439.
doi: 10.1006/jsvi.2000.3428. |
[9] |
J.-P. Dalmont,
Acoustic impedance measurement, Part Ⅱ: A new calibration method, Journal of Sound and Vibration, 243 (2001), 441-459.
doi: 10.1006/jsvi.2000.3429. |
[10] |
J.-P. Dalmont, B. Gazengel, J. Gilbert and J. Kergomard,
Some aspects of tuning and clean intonation in reed instruments, Applied Acoustics, 46 (1995), 19-60.
doi: 10.1016/0003-682X(95)93950-M. |
[11] |
P. de la Cuadra, The Sound of Oscillating Air Jets: Physics, Modeling and Simulation in Flute-Like Instruments, Ph.D thesis, Stanford University, 2006. |
[12] |
P. de la Cuadra, C. Vergez and B. Fabre, Visualization and analysis of jet oscillation under transverse acoustic perturbation, Journal of Flow Visualization and Image Processing, 14 (2007). |
[13] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[14] |
J.-B. Doc and C. Vergez,
Oscillation regimes produced by an alto saxophone: Influence of the control parameters and the bore inharmonicity, The Journal of the Acoustical Society of America, 137 (2015), 1756-1765.
doi: 10.1121/1.4916197. |
[15] |
J.-B. Doc, C. Vergez and S. Missoum,
A minimal model of a single-reed instrument producing quasi-periodic sounds, Acta Acustica united with Acustica, 100 (2014), 543-554.
doi: 10.3813/AAA.918734. |
[16] |
P. G. Drazin, Introduction to Hydrodynamic Stability, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511809064.![]() ![]() ![]() |
[17] |
K. Engelborghs, T. Luzyanina and D. Roose,
Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28 (2002), 1-21.
doi: 10.1145/513001.513002. |
[18] |
K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Technical Report TW-330, Department of Computer Science, K.U. Leuven, Belgium, 2001. |
[19] |
K. Engelborghs and D. Roose,
Smoothness loss of periodic solutions of a neutral functional-differential equation: On a bifurcation of the essential spectrum, Dynamics and Stability of Systems, 14 (1999), 255-273.
doi: 10.1080/026811199281994. |
[20] |
B. Fabre, J. Gilbert and A. Hirschberg, Modeling of wind instruments, Springer Handbook of Systematic Musicology, (2018), 121–139.
doi: 10.1007/978-3-662-55004-5_7. |
[21] |
B. Fabre and A. Hirschberg,
Physical modeling of flue instruments: A review of lumped models, Acta Acustica united with Acustica, 86 (2000), 599-610.
|
[22] |
B. Fabre, A. Hirschberg and A. P. J. Wijnands,
Vortex shedding in steady oscillation of a flue organ pipe, Acta Acustica united with Acustica, 82 (1996), 863-877.
|
[23] |
G. Falkovich, Fluid Mechanics: A Short Course for Physicists, Cambridge university press, Cambridge, 2011.
doi: 10.1017/CBO9780511794353.![]() ![]() ![]() |
[24] |
N. H. Fletcher,
Nonlinear dynamics and chaos in musical instruments, Complexity International, 1 (1994), 106-117.
|
[25] |
J. Gilbert, S. Maugeais and and C. Vergez,
Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation, Acta Acustica, 4 (2020), 27.
doi: 10.1051/aacus/2020026. |
[26] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 2013. |
[27] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[28] |
A. Lefebvre, G. Goudou and G. Scavone, The wind instrument acoustic toolkit, Available from: http://www.music.mcgill.ca/caml/wiat/. |
[29] |
D. H. Lyons,
Resonance frequencies of the recorder (English flute), The Journal of the Acoustical Society of America, 70 (1981), 1239-1247.
doi: 10.1121/1.387136. |
[30] |
C. Maganza, R. Caussé and F. Laloë,
Bifurcations, period doublings and chaos in clarinetlike systems, Europhysics Letters, 1 (1986), 295.
|
[31] |
M. E. McIntyre, R. T. Schumacher and J. Woodhouse,
On the oscillations of musical instruments, The Journal of the Acoustical Society of America, 74 (1983), 1325-1345.
doi: 10.1121/1.390157. |
[32] |
A. W. Nolle,
Sinuous instability of a planar air jet: Propagation parameters and acoustic excitation, The Journal of the Acoustical Society of America, 103 (1998), 3690-3705.
doi: 10.1121/1.423089. |
[33] |
D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, Numerical Continuation Methods for Dynamical Systems, Underst. Complex Syst., Springer, Dordrecht, (2007). 359–399.
doi: 10.1007/978-1-4020-6356-5_12. |
[34] |
L. F. Shampine,
Dissipative approximations to neutral DDEs, Appl. Math. Comput., 203 (2008), 641-648.
doi: 10.1016/j.amc.2008.05.010. |
[35] |
J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey and D. Roose, Manual - Bifurcation analysis of delay differential equations, Available from: arXiv.org/abs/1406.7144. |
[36] |
P.-A. Taillard, F. Silva, P. Guillemain and J. Kergomard,
Modal analysis of the input impedance of wind instruments. Application to the sound synthesis of a clarinet, Applied Acoustics, 141 (2018), 271-280.
doi: 10.1016/j.apacoust.2018.07.018. |
[37] |
S. Terrien, R. Blandin, C. Vergez and B. Fabre,
Regime change thresholds in recorder-like instruments: Influence of the mouth pressure dynamics, Acta Acustica united with Acustica, 101 (2015), 300-316.
doi: 10.3813/AAA.918828. |
[38] |
S. Terrien, C. Vergez, P. de la Cuadra and B. Fabre,
Experimental analysis of non-periodic sound regimes in flute-like musical instruments, The Journal of the Acoustical Society of America, 149 (2021), 2100-2108.
doi: 10.1121/10.0003758. |
[39] |
S. Terrien, C. Vergez and B. Fabre,
Flute-like musical instruments: A toy model investigated through numerical continuation, Journal of Sound and Vibration, 332 (2013), 3833-3848.
doi: 10.1016/j.jsv.2013.01.041. |
[40] |
S. Terrien, C. Vergez, B. Fabre and D. A. W. Barton,
Calculation of the steady-state oscillations of a flute model using the orthogonal collocation method, Acta Acustica united with Acustica, 100 (2014), 690-704.
doi: 10.3813/AAA.918748. |
[41] |
C. Vauthrin, B. Fabre and I. Cossette,
How does a flute player adapt his breathing and playing to musical tasks?, Acta Acustica united with Acustica, 101 (2015), 224-237.
doi: 10.3813/AAA.918821. |
[42] |
M. P. Verge, Aeroacoustics of Confined Jets: With Applications to the Physical Modeling of Recorder-Like Instruments, Ph.D thesis, Technische Universiteit Eindhoven, 1995. |
[43] |
M. P. Verge, B. Fabre, W. E. A. Mahu, A. Hirschberg, R. R. van Hassel, A. P. J. Wijnands, J. J. de Vries and C. J. Hogendoorn,
Jet formation and jet velocity fluctuations in a flue organ pipe, The Journal of the Acoustical Society of America, 95 (1994), 1119-1132.
doi: 10.1121/1.408460. |
[44] |
H. A. K. Wright and D. M. Campbell,
Analysis of the sound of chilean pifilca flutes, The Galpin Society Journal, 51 (1998), 51-63.
doi: 10.2307/842760. |












Chilean flute | |||||||||
recorder | |||||||||
Chilean flute | |||||||||
recorder |
Chilean flute | |||||||||
recorder | |||||||||
Chilean flute | |||||||||
recorder |
h | W | ||||
Chilean flute | |||||
recorder |
h | W | ||||
Chilean flute | |||||
recorder |
[1] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
[2] |
Alessia Andò, Dimitri Breda, Francesca Scarabel. Numerical continuation and delay equations: A novel approach for complex models of structured populations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2619-2640. doi: 10.3934/dcdss.2020165 |
[3] |
Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 |
[4] |
Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355 |
[5] |
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 |
[6] |
Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031 |
[7] |
Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 |
[8] |
Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906 |
[9] |
John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342 |
[10] |
Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124 |
[11] |
Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678 |
[12] |
Mikhail Kamenskii, Boris Mikhaylenko. Bifurcation of periodic solutions from a degenerated cycle in equations of neutral type with a small delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 437-452. doi: 10.3934/dcdsb.2013.18.437 |
[13] |
Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845 |
[14] |
Mahmoud Abouagwa, Ji Li. G-neutral stochastic differential equations with variable delay and non-Lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1583-1606. doi: 10.3934/dcdsb.2019241 |
[15] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
[16] |
Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065 |
[17] |
Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793 |
[18] |
R.H. Fabiano, J. Turi. Making the numerical abscissa negative for a class of neutral equations. Conference Publications, 2003, 2003 (Special) : 256-262. doi: 10.3934/proc.2003.2003.256 |
[19] |
Tomás Caraballo, P.E. Kloeden, Pedro Marín-Rubio. Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 177-196. doi: 10.3934/dcds.2007.19.177 |
[20] |
Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]