Citation: |
[1] |
U. M. Ascher, E. Larionov, S. H. Sheen and D. K. Pai, Simulating deformable objects for computer animation: A numerical perspective, J. Comput. Dyn., 9 (2022), 47-68.
doi: 10.3934/jcd.2021021.![]() ![]() |
[2] |
M. Berardi and F. Difonzo, A quadrature-based scheme for numerical solutions to Kirchhoff transformed Richards' equation, J. Comput. Dyn., 9 (2022), 69-84.
doi: 10.3934/jcd.2022001.![]() ![]() |
[3] |
S. Blanes, F. Casas and A. Escorihuela-Tomàs, Applying splitting methods with complex coefficients to the numerical integration of unitary problems, J. Comput. Dyn., 9 (2022), 85-101.
doi: 10.3934/jcd.2021022.![]() ![]() |
[4] |
D. Breda, D. Liessi and R. Vermiglio, Piecewise discretization of monodromy operators of delay equations on adapted meshes, J. Comput. Dyn., 9 (2022), 103-121.
doi: 10.3934/jcd.2022004.![]() ![]() |
[5] |
R. D'Ambrosio and S. Di Giovacchino, Numerical preservation issues in stochastic dynamical systems by $\vartheta$-methods, J. Comput. Dyn., 9 (2022), 123-131.
doi: 10.3934/jcd.2021023.![]() ![]() |
[6] |
V. O. Juma, L. Dehmelt, S. Portet and A. Madzvamuse, A mathematical analysis of an activator-inhibitor Rho GTPase model, J. Comput. Dyn., 9 (2022), 133-158.
doi: 10.3934/jcd.2021024.![]() ![]() |
[7] |
G. Kirsten, Multilinear POD-DEIM model reduction for 2D and 3D semilinear systems of differential equations, J. Comput. Dyn., 9 (2022), 159-183.
doi: 10.3934/jcd.2021025.![]() ![]() |
[8] |
D. Lacitignola, M. Frittelli, V. Cusimano and A. De Gaetano, Pattern formation on a growing oblate spheroid. An application to adult sea urchin development, J. Comput. Dyn., 9 (2022), 185-206.
doi: 10.3934/jcd.2021027.![]() ![]() |
[9] |
G. Manzini and A. Mazzia, A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem, J. Comput. Dyn., 9 (2022), 207-238.
doi: 10.3934/jcd.2021020.![]() ![]() |
[10] |
E. Messina, M. Pezzella and A. Vecchio, A non-standard numerical scheme for an age-of-infection epidemic model, J. Comput. Dyn., 9 (2022), 239-252.
doi: 10.3934/jcd.2021029.![]() ![]() |
[11] |
J. B. van den Berg, G. W. Duchesne and J.-P. Lessard, Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach, J. Comput. Dyn., 9 (2022), 253-278.
doi: 10.3934/jcd.2022005.![]() ![]() |
[12] |
M. Viviani, An algebraic approach to the spontaneous formation of spherical jets, J. Comput. Dyn., 9 (2022), 279-298.
doi: 10.3934/jcd.2021028.![]() ![]() |
[13] |
A. Zanna, Symplectic P-stable additive Runge–Kutta methods, J. Comput. Dyn., 9 (2022), 299-328.
doi: 10.3934/jcd.2021030.![]() ![]() |