Citation: |
[1] | U. M. Ascher, E. Larionov, S. H. Sheen and D. K. Pai, Simulating deformable objects for computer animation: A numerical perspective, J. Comput. Dyn., 9 (2022), 47-68. doi: 10.3934/jcd.2021021. |
[2] | M. Berardi and F. Difonzo, A quadrature-based scheme for numerical solutions to Kirchhoff transformed Richards' equation, J. Comput. Dyn., 9 (2022), 69-84. doi: 10.3934/jcd.2022001. |
[3] | S. Blanes, F. Casas and A. Escorihuela-Tomàs, Applying splitting methods with complex coefficients to the numerical integration of unitary problems, J. Comput. Dyn., 9 (2022), 85-101. doi: 10.3934/jcd.2021022. |
[4] | D. Breda, D. Liessi and R. Vermiglio, Piecewise discretization of monodromy operators of delay equations on adapted meshes, J. Comput. Dyn., 9 (2022), 103-121. doi: 10.3934/jcd.2022004. |
[5] | R. D'Ambrosio and S. Di Giovacchino, Numerical preservation issues in stochastic dynamical systems by $\vartheta$-methods, J. Comput. Dyn., 9 (2022), 123-131. doi: 10.3934/jcd.2021023. |
[6] | V. O. Juma, L. Dehmelt, S. Portet and A. Madzvamuse, A mathematical analysis of an activator-inhibitor Rho GTPase model, J. Comput. Dyn., 9 (2022), 133-158. doi: 10.3934/jcd.2021024. |
[7] | G. Kirsten, Multilinear POD-DEIM model reduction for 2D and 3D semilinear systems of differential equations, J. Comput. Dyn., 9 (2022), 159-183. doi: 10.3934/jcd.2021025. |
[8] | D. Lacitignola, M. Frittelli, V. Cusimano and A. De Gaetano, Pattern formation on a growing oblate spheroid. An application to adult sea urchin development, J. Comput. Dyn., 9 (2022), 185-206. doi: 10.3934/jcd.2021027. |
[9] | G. Manzini and A. Mazzia, A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem, J. Comput. Dyn., 9 (2022), 207-238. doi: 10.3934/jcd.2021020. |
[10] | E. Messina, M. Pezzella and A. Vecchio, A non-standard numerical scheme for an age-of-infection epidemic model, J. Comput. Dyn., 9 (2022), 239-252. doi: 10.3934/jcd.2021029. |
[11] | J. B. van den Berg, G. W. Duchesne and J.-P. Lessard, Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach, J. Comput. Dyn., 9 (2022), 253-278. doi: 10.3934/jcd.2022005. |
[12] | M. Viviani, An algebraic approach to the spontaneous formation of spherical jets, J. Comput. Dyn., 9 (2022), 279-298. doi: 10.3934/jcd.2021028. |
[13] | A. Zanna, Symplectic P-stable additive Runge–Kutta methods, J. Comput. Dyn., 9 (2022), 299-328. doi: 10.3934/jcd.2021030. |