[1]
|
C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Applications, CRC Press, Boca Raton, 2014.
doi: 10.1201/b15410.
|
[2]
|
M. de Berg, O. Cheong, M. van Kerveld and M. Overmars, Computational geometry: Algorithms and Applications, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-77974-2.
|
[3]
|
M. D. Buhmann, Radial Basis Functions: Theory and Implementations, volume 12 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543241.
|
[4]
|
S. L. Chiu, Fuzzy model identification based on cluster estimation, Journal of Intelligent & Fuzzy Systems, 2 (1994), 267-278.
doi: 10.3233/IFS-1994-2306.
|
[5]
|
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Math. 1904, Springer, 2007.
|
[6]
|
P. Giesl, Construction of a local and global Lyapunov function using radial basis functions, IMA J. Appl. Math., 73 (2008), 782-802.
doi: 10.1093/imamat/hxn018.
|
[7]
|
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291.
|
[8]
|
P. Giesl and N. Mohammed, Combination of refinement and verification for the construction of Lyapunov functions using radial basis functions, In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO), IEEE, 2018,569-578.
doi: 10.5220/0006944405690578.
|
[9]
|
P. Giesl and N. Mohammed, Verification estimates for the construction of Lyapunov functions using meshfree collocation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4955-4981.
doi: 10.3934/dcdsb.2019040.
|
[10]
|
P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to Dynamical Systems, SIAM J. Numer. Anal., 45 (2007), 1723-1741.
doi: 10.1137/060658813.
|
[11]
|
S. F. Hafstein, A constructive converse Lyapunov theorem on exponential stability, Discrete and Continuous Dynamical Systems - Series A, 10 (2004), 657-678.
doi: 10.3934/dcds.2004.10.657.
|
[12]
|
K. Hammouda and F Karray, A comparative study on data clustering techniques, University of Waterloo, Ontario, Canada, 2000.
|
[13]
|
S. S. Iyengar, K. G. Boroojeni and N. Balakrishnan, Mathematical Theories of Distributed Sensor Networks, Springer, New York, 2014.
doi: 10.1007/978-1-4419-8420-3.
|
[14]
|
T. A. Johansen, Computation of Lyapunov functions for smooth, nonlinear systems using convex optimization, Automatica, 36 (2000), 1617-1626.
doi: 10.1016/S0005-1098(00)00088-1.
|
[15]
|
C. M. Kellett, Classical converse theorems in Lyapunov's second method, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2333-2360.
doi: 10.3934/dcdsb.2015.20.2333.
|
[16]
|
R. Klein, Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1989.
doi: 10.1007/3-540-52055-4.
|
[17]
|
J. Leskovec, A. Rajaraman and J. D. Ullman, Mining of Massive DataSets, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781139924801.
|
[18]
|
J. L. Massera, On Liapounoff's conditions of stability, Ann. of Math., 50 (1949), 705-721.
doi: 10.2307/1969558.
|
[19]
|
V. Moertini, Introduction to five data clustering algorithms, INTEGRAL, 7 (2002).
|
[20]
|
N. Mohammed, Grid Refinement and Verification Estimates for the RBF Construction Method of Lyapunov Functions, Doctoral thesis (PhD), University of Sussex, 2016.
|
[21]
|
N. Mohammed and P. Giesl, Grid refinement in the construction of Lyapunov functions using radial basis functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2453-2476.
doi: 10.3934/dcdsb.2015.20.2453.
|
[22]
|
P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza, PhD thesis: California Institute of Technology Pasadena, California, 2000.
|
[23]
|
P. K. Pisharady, P. Vadakkepat and L. A. Poh, Computational Intelligence in Multi-feature Visual Pattern Recognition. Hand Posture and Face Recognition using Biological Inspired Approaches, Springer Science+Business Media, Singapore, 2014.
doi: 10.1007/978-981-287-056-8.
|
[24]
|
M. J. D. Powell, The theory of radial basis function approximation in 1990, In Advances in
Numerical Analysis, Vol. II (Lancaster, 1990), Oxford Sci. Publ., Oxford Univ. Press, New
York, 1992,105-210.
|
[25]
|
F. P. Preparata and M. I. Shamos, Computational Geometry, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4612-1098-6.
|
[26]
|
R. Schaback and H. Wendland, Kernel techniques: From machine learning to meshless methods, Acta Numer., 15 (2006), 543-639.
doi: 10.1017/S0962492906270016.
|
[27]
|
V. Torra, Information Fusion in Data Mining, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-540-36519-8.
|
[28]
|
H. Wendland, Error estimates for interpolation by compactly supported Radial Basis Functions of minimal degree, J. Approx. Theory, 93 (1998), 258-272.
doi: 10.1006/jath.1997.3137.
|
[29]
|
H. Wendland, Scattered Data Approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2005.
|
[30]
|
R. R. Yager and D. P. Filev, Generation of fuzzy rules by mountain clustering, Journal of Intelligent & Fuzzy Systems, 2 (1993), 209-219.
doi: 10.3233/IFS-1994-2301.
|