Article Contents
Article Contents

# Construction of mean-square Lyapunov-basins for random ordinary differential equations

• We propose a straightforward basin search algorithm to determine a suitably large level set of the mean-square Lyapunov-function that corresponds to the linearization about an path-wise equilibrium solution of a random ordinary differential equation (RODE). Noise intensity plays a crucial role for how similar the behavior of solutions of RODEs is compared to the corresponding deterministic system. In this regards, the basin search algorithm also allows to numerically estimate up to which noise intensities linearized mean-square asymptotic stability remains.

Mathematics Subject Classification: Primary: 34F05, 34D20, 37M05; Secondary: 60H10.

 Citation:

• Figure 1.  The path-wise setting and in particular the theory of flows of Random Dynamical Systems connects certain SODEs and RODEs

Figure 2.  Simulations of the dynamics of our benchmark system (1) for different values of $c = c_1 = c_2$. (a) sketches the deterministic ($c = 0$) case, and (b) displays some trajectories for $c = \tfrac{1}{17}$ showing divergent or convergent behaviors. In (c)-(f) results of Monte Carlo runs are displayed for several values of $c \in \{ \tfrac{1}{17}, \tfrac{1}{8}, \tfrac{1}{2}, 2 \}$. See the text for details

Figure 3.  (a) Approximation of the region with $v' < 0$ (blue) with $c_1 = c_2 = \tfrac{1}{17}$. An application of our basin search algorithm with some refinement steps is shown in (b)

Figure 4.  Optimal radii $r$ of the Lyapunov-basins obtained with our algorithm for increasing noise strengths $c = c_1 = c_2$ starting at $c = 0$ (deterministic case)

•  [1] L. Arnold, A formula connecting sample and moment stability of linear stochastic systems, SIAM Journal on Applied Mathematics, 44 (1984), 793-802.  doi: 10.1137/0144057. [2] L. Arnold, Random Dynamical Systems, 2nd edition, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-12878-7. [3] L. Arnold, W. Kliemann and E. Oeljeklaus, Lyapunov exponents of linear stochastic systems, in L. Arnold & V. Wihstutz (Eds): Lyapunov Exponents, Springer-Verlag, Berlin, (1986), 85-125. doi: 10.1007/BFb0076835. [4] L. Arnold, G. Papanicolaou and V. Wihstutz, Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications, SIAM Journal on Applied Mathematics, 46 (1986), 427-450.  doi: 10.1137/0146030. [5] H. Bunke, Gewöhnliche Differentialgleichungen mit Zufälligen Parametern, Akademie Verlag, Berlin, 1972. [6] N. D. Cong,  Topological Dynamics of Random Dynamical Systems, Clarendon Press, Oxford, 1997. [7] P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Springer-Verlag, Berlin, 2007. [8] P. Giesl and S. Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming, Journal of Mathematical Analysis and Applications, 388 (2012), 463-479.  doi: 10.1016/j.jmaa.2011.10.047. [9] P. Giesl and S. Hafstein, Local Lyapunov functions for periodic and finite-time ODEs, in Johann, A., Kruse, H.-P., Rupp, F. and Schmitz, S. (eds.), Recent Trends in Dynamical Systems, Springer Proceedings in Mathematics & Statistics, Vol. 35, Springer-Verlag, Berlin, (2013), 125-152. doi: 10.1007/978-3-0348-0451-6_7. [10] D. T. Gillespie, Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral, Physical Review E, 54 (1996), 2084-2091.  doi: 10.1103/PhysRevE.54.2084. [11] L. Grüne and P. E. Kloeden, Pathwise approximation of random ordinary differential equations, BIT Numerical Mathematics, 41 (2001), 711-721.  doi: 10.1023/A:1021995918864. [12] X. Han and P. E. Kloeden, Random Ordinary Differential Equations and Their Numerical Solution, Springer, 2017. doi: 10.1007/978-981-10-6265-0. [13] P. Imkeller and C. Lederer, The cohomology of stochastic and random differential equations, and local linearization of stochastic flows, Stochastics and Dynamics, 2 (2002), 131-159.  doi: 10.1142/S021949370200039X. [14] P. Imkeller and B. Schmalfuss, The conjugacy of stochastic and random differential equations and the existence of global attractors, Journal of Dynamics and Differential Equations, 13 (2001), 215-249.  doi: 10.1023/A:1016673307045. [15] A. Jentzen, Numerische Verfahren Hoher Ordnung für Zufällige Differentialgleichungen, Diplomarbeit, J. W. Goethe Universität, Frankfurt am Main, 2007. [16] A. Jentzen and P. E. Kloeden, Taylor Approximations for Stochastic Partial Differential Equations, CBMS-NSF Regional Conference Series in Applied Mathematics (No. 83), SIAM Press, 2011. doi: 10.1137/1.9781611972016. [17] A. Kistner, Strenge Aussagen über Lösung, Momente und Stabilität Linearer Systeme mit Parameteranregung Durch Farbiges Rauschen, Dissertation, Universität Stuttgart, 1978. [18] P. E. Kloeden and A. Jentzen, Pathwise convergent higher order numerical schemes for random ordinary differential equations, Proc. R. Soc. A, 463 (2007), 2929-2944.  doi: 10.1098/rspa.2007.0055. [19] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, (3rd printing), Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-662-12616-5. [20] C. Lederer, Konjugation Stochastischer und Zufälliger Stationärer Differentialgleichungen und Eine Version des Lokalen Satzes von Hartman-Grobman für Stochastische Differentialgleichungen, Dissertation, Humboldt-Universität Berlin, 2001. [21] Q. Liu and P. Liu, Topological stability of hyperbolic sets of flows under random perturbations, Discrete and Continuous Dynamical Systems Ser. B, 13 (2010), 117-127.  doi: 10.3934/dcdsb.2010.13.117. [22] S. A. Molcanov, The structure of eigenfunctions of one-dimensional unordered structures, Mathematics of the USSR – Izvestiya, 12 (1978), 69-101.  doi: 10.1070/IM1978v012n01ABEH001841. [23] T. Neckel, A. Parra Hinojosa and F. Rupp, Path-Wise Algorithms for Random & Stochastic ODEs with Applications to Ground-Motion-Induced Excitations of Multi-Storey Buildings, TU München Technical Report: TUM-I1758, 2015. doi: 10.14459/2017md1350560. [24] T. Neckel and F. Rupp, Random Differential Equations in Scientific Computing – Motivation, Theory & Simulation, Versita/ De Gruyter Publishing, London, 2013. doi: 10.2478/9788376560267. [25] A. Papachristodoulo and S. Prajna, On the construction of Lyapunov functions using the sum of squares decomposition, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, (2002), 3472-3487. doi: 10.1109/CDC.2002.1184414. [26] P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, California Institute of Technology, Pasadena, 2000. [27] S. Prajna, P. A. Parrilo and A. Rantzer, Nonlinear control synthesis by convex optimization, IEEE Transactions on Automatic Control, 49 (2004), 310-314.  doi: 10.1109/TAC.2003.823000. [28] C. Riesinger, T. Neckel and F. Rupp, Solving random ordinary differential equations on GPU clusters using multiple levels of parallelism, SIAM Journal on Scientific Computing (SISC), 38 (2016), C372-C402. doi: 10.1137/15M1036014. [29] C. Riesinger, T. Neckel, F. Rupp, A. Parra Hinojosa and H.-J. Bungartz, GPU optimization of pseudo random number generators for random ordinary differential equations, Procedia Computer Science, Proceedings of the International Conference of Computational Science 2014 (Cairns, AUS), Volume 29,172-183. doi: 10.1016/j.procs.2014.05.016. [30] E. D. Sontag, Mathematical Control Theory, 2nd edition, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-1-4612-0577-7.

Figures(4)