\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Numerical dynamics of integrodifference equations: Forward dynamics and pullback attractors

The work of Huy Huynh has been supported by the Austrian Science Fund (FWF) under grant number P 30874-N35.
Peter E. Kloeden thanks the Universität Klagenfurt for support and hospitality

Abstract / Introduction Full Text(HTML) Figure(3) / Table(2) Related Papers Cited by
  • In order to determine the dynamics of nonautonomous equations both their forward and pullback behavior need to be understood. For this reason we provide sufficient criteria for the existence of such attracting invariant sets in a general setting of nonautonomous difference equations in metric spaces. In addition it is shown that both forward and pullback attractors, as well as forward limit sets persist and that the latter two notions even converge under perturbation.

    As concrete application, we study integrodifference equations over the continuous functions under spatial discretization of collocation type. Integrodifference equation and Pullback attractor and Forward attractor and Urysohn operator

    Mathematics Subject Classification: 37C70, 37G35, 45G15, 65R20, 65P40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Shape of generalized Beverton-Holt functions $ g_\alpha(z): = \tfrac{z}{1+z^\alpha} $ for $ \alpha = \tfrac{1}{2} $ (dashed), $ \alpha = 1 $ (solid) and $ \alpha = 2 $ (dash dotted)

    Figure 2.  Sequences of sets containing functions in the fibers $ {\mathcal A}_n^\ast(t) $, $ 0\leq t\leq 10 $, for $ \alpha \in\left\{\frac{1}{2}, 1\right\} $, respectively from left to right

    Figure 3.  Development of the averaged error $ \|\xi^n-\xi^{2n}\| $ for $ n \in\left\{2^4, \ldots, 2^{10}\right\} $ nodes and parameters $ \alpha \in\left\{\frac{1}{2}, 1,2\right\} $

    Table 1.  Values of the approximate convergence rates $ c(n) $ for $ n\in\left\{{2^4, \ldots, 2^{10}}\right\} $ nodes and parameters $ \alpha\in\left\{{\tfrac{1}{2}, 1, 2}\right\} $

    $ n $ $ \alpha=\tfrac{1}{2} $ $ \alpha=1 $
    16 2.112614126300029 2.100856100109834
    32 2.055209004601208 2.051123510423984
    64 2.026777868073563 2.025681916479720
    128 2.013096435137189 2.012865860858589
    256 2.006536458546063 2.006433295172438
    512 2.003256451919377 2.003220576642864
    1024 2.001624177537549 2.001610772707442
     | Show Table
    DownLoad: CSV

    Table 2.  Values of the approximate convergence rates $ c(n) $ for $ n\in\left\{{2^4, \ldots, 2^{10}}\right\} $ nodes and final times $ T\in\left\{{10, 50}\right\} $

    $ n $ $ T=10 $ $ T=50 $
    16 2.2837654186745091 2.0849355987819758
    32 2.1026388978422323 2.0460569864690159
    64 2.0383208155788273 2.0248832042126796
    128 2.0182226164652075 2.0155618789522607
    256 2.0137461227397369 1.9944650101138011
    512 2.0168071129306111 2.0415755409000083
    1024 2.1561021773053772 2.6711767140843996
     | Show Table
    DownLoad: CSV
  • [1] K. E. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J. Integr. Equat. Appl., 4 (1992), 15-46.  doi: 10.1216/jiea/1181075664.
    [2] K. E. Atkinson and W. Han, Theoretical Numerical Analysis (2nd edition), Texts in Applied Mathematics 39, Springer, Heidelberg etc., 2000. doi: 10.1007/978-0-387-21526-6.
    [3] M. C. Bortolan, A. N. Carvalho and J. A. Langa, Attractors Under Autonomous and Non-Autonomous Perturbations, Mathematical Surveys and Monographs, 246 (2020), AMS, Providence, RI.
    [4] J. Bouhours and M. A. Lewis, Climate change and integrodifference equations in a stochastic environment, Bull. Math. Biology, 78 (2016), 1866-1903.  doi: 10.1007/s11538-016-0203-z.
    [5] A. N. CarvalhoJ. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.
    [6] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer, Berlin etc., 2012. doi: 10.1007/978-1-4614-4581-4.
    [7] D. N. ChebanP. E. Kloeden and B. Schmalfuß, Pullback attractors in dissipative nonautonomous differential equations under discretization, J. Dyn. Differ. Equations, 13 (2000), 185-213.  doi: 10.1023/A:1009000700546.
    [8] H. CuiP. E. Kloeden and M. Yang, Forward omega limit sets of nonautonomous dynamical systems, Discrete Contin. Dyn. Syst. (Series S), 13 (2019), 1103-1114.  doi: 10.3934/dcdss.2020065.
    [9] F. Dubeau and J. Savoie, Optimal error bounds for quadratic spline interpolation, J. Math. Anal. Appl., 198 (1996), 49-63.  doi: 10.1006/jmaa.1996.0067.
    [10] W. Hackbusch, Integral Equations – Theory and Numerical Treatment. Birkhäuser, Basel etc., 1995. doi: 10.1007/978-3-0348-9215-5.
    [11] W. Hackbusch, The Concept of Stability in Numerical Mathematics, Series in Computational Mathematics 45, Springer, Heidelberg etc., 2014. doi: 10.1007/978-3-642-39386-0.
    [12] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, AMS, Providence, RI, 1988. doi: 10.1090/surv/025.
    [13] J. K. HaleX.-B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comput., 50 (1988), 89-123.  doi: 10.1090/S0025-5718-1988-0917820-X.
    [14] C. A. Hall and W. W. Meyer, Optimal error bounds for cubic spline interpolation, J. Approx. Theory, 16 (1976), 105-122.  doi: 10.1016/0021-9045(76)90040-X.
    [15] G. Hämmerlin and K.-H. Hoffmann, Numerical Mathematics, Undergraduate Texts in Mathematics. Springer, New York etc., 1991. doi: 10.1007/978-1-4612-4442-4.
    [16] F. Hirsch and G. Lacombe, Elements of Functional Analysis, Graduate Texts in Mathematics 192, Springer, New York etc., 1999. doi: 10.1007/978-1-4612-1444-1.
    [17] L. T. HoangE. J. Olson and J. C. Robinson, On the continuity of global attractors, Proc. Am. Math. Soc., 143 (2015), 4389-4395.  doi: 10.1090/proc/12598.
    [18] L. T. HoangE. J. Olson and J. C. Robinson, Continuity of pullback and uniform attractors, J. Differ. Equations, 264 (2018), 4067-4093.  doi: 10.1016/j.jde.2017.12.002.
    [19] H. HuynhP. E. Kloeden and C. Pötzsche, Forward and pullback dynamics of nonautonomous integrodifference equations: Basic constructions, J. Dyn. Diff. Equat., 34 (2021), 671-699.  doi: 10.1007/s10884-020-09887-8.
    [20] J. JacobsenY. Jin and M. A. Lewis, Integrodifference models for persistence in temporally varying river environments, J. Math. Biol., 70 (2015), 549-590.  doi: 10.1007/s00285-014-0774-y.
    [21] W. J. KammererG. W. Reddien and R. S. Varga., Quadratic interpolatory splines, Numer. Math., 22 (1974), 241-259.  doi: 10.1007/BF01406966.
    [22] P. E. Kloeden, Asymptotic invariance and the discretization of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016), 179-189.  doi: 10.3934/jcd.2016009.
    [23] P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations, SIAM J. Numer. Anal., 23 (1986), 986-995.  doi: 10.1137/0723066.
    [24] P. E. Kloeden and J. Lorenz, Lyapunov stability and attractors under discretization, Differential Equations, Proceedings of the EQUADIFF Conference, C.M. Dafermos, G. Ladas, G. Papanicolaou (eds.), Marcel Dekker, Inc., New York, 361-368, 1989.
    [25] P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Am. Math. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.
    [26] P. E. KloedenC. Pötzsche and M. Rasmussen, Limitations of pullback attractors for processes, J. Difference Equ. Appl., 18 (2012), 693-701.  doi: 10.1080/10236198.2011.578070.
    [27] P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs 176, AMS, Providence, RI, 2011. doi: 10.1090/surv/176.
    [28] P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference Equ. Appl., 22 (2016), 1027-1039.  doi: 10.1080/10236198.2015.1107550.
    [29] P. E. Kloeden and M. Yang, An Introduction to Nonautonomous Dynamical Systems and their Attractors, World Sci. Publ., Hackensack, NJ, 2021.
    [30] M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986), 109-136.  doi: 10.1016/0025-5564(86)90069-6.
    [31] F. Lutscher, Integrodifference Equations in Spatial Ecology, Interdisciplinary Applied Mathematics 49, Springer, Cham, 2019. doi: 10.1007/978-3-030-29294-2.
    [32] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics, 11, John Wiley & Sons, Chichester etc., 1976.
    [33] E. Neuman, Bounds for the norm of certain spline projections, J. Appprox. Theory, 27 (1979), 135-145.  doi: 10.1016/0021-9045(79)90115-1.
    [34] C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes Math. 2002, Springer, Berlin etc., 2010. doi: 10.1007/978-3-642-14258-1.
    [35] C. Pötzsche, Order-preserving nonautonomous discrete dynamics: Attractors and entire solutions, Positivity, 19 (2015), 547-576.  doi: 10.1007/s11117-014-0315-3.
    [36] C. Pötzsche, Numerical dynamics of integrodifference equations: Basics and discretization errors in a $C^0$-setting, Appl. Math. Comput., 354 (2019), 422-443.  doi: 10.1016/j.amc.2019.02.033.
    [37] A. Stuart, Perturbation theory for infinite dimensional dynamical systems, in M. Ainsworth, J. Levesley, W. Light, M. Marletta (eds.), Theory and Numerics of Ordinary and Partial Differential Equations, Advances in Numerical Analysis IV, pp. 181-290, Clarendon Press, Oxford, 1995.
    [38] A. M. Stuart and  A. R. HumphriesDynamical Systems and Numerical Analysis, Monographs on Applied and Computational Mathematics 2, University Press, Cambridge, 1998. 
  • 加载中

Figures(3)

Tables(2)

SHARE

Article Metrics

HTML views(1357) PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return