\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Conservative integrators for piecewise smooth systems with transversal dynamics

  • *Corresponding author: Nikolas Wojtalewicz

    *Corresponding author: Nikolas Wojtalewicz
Abstract / Introduction Full Text(HTML) Figure(9) / Table(1) Related Papers Cited by
  • We introduce conservative integrators for long term integration of piecewise smooth systems with transversal dynamics and piecewise smooth conserved quantities. In essence, for a piecewise dynamical system with piecewise defined conserved quantities where its trajectories cross transversally to its interface, we combine Mannshardt's transition scheme and the Discrete Multiplier Method to obtain conservative integrators capable of preserving conserved quantities up to machine precision and accuracy order. We prove that the order of accuracy of the conservative integrators is preserved after crossing the interface in the case of codimension one number of conserved quantities. Numerical examples in two and three dimensions illustrate the preservation of accuracy order across the interface for cubic and logarithmic type conserved quantities. We observed that conservative transition schemes can prevent spurious transitions from occurring, even in the case when there are fewer conserved quantities.

    Mathematics Subject Classification: Primary: 65L05, 65L12, 65L20, 65L70, 65P10, 37M05, 37M15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  (A) PWS trajectories for the elliptic curve example with the interface being a circle of radius 1 centered at the origin. (B) Convergence of the error between the exact transition time $ t^* $ and the approximate transition time $ \hat{t} $ for the PWS elliptic curve system

    Figure 2.  Comparison of error in the solution of the PWS elliptic curve system with different perturbation added to $ \hat{t} $ each time the interface is crossed

    Figure 3.  Comparison of the error in conserved quantity versus time between our DMM transition scheme and the RK2 transition scheme for the PWS elliptic curve system. An initial condition of $ [-1,-1] $ and a step size $ 10^{-3} $ was used for both methods

    Figure 4.  (A) An initial condition of $ [0.612, 0.0137, 0.629] $ was used with a final time $ T = 700 $ and step size $ \tau = 0.07 $. Here DMM transition scheme agrees with the RK4 transition scheme, but the RK2 transition scheme has drifted far away due to spurious transitions. (B) Convergence of the error between the exact transition time $ t^* $ and the approximate transition time $ \hat{t} $ for the PWS three species Lotka-Volterra system

    Figure 5.  Comparison of error in the solution of the PWS three species Lotka-Volterra system with different perturbation added to $ \hat{t} $ each time the interface is crossed

    Figure 6.  Comparison of the error in conserved quantity versus time, as computed by RK2 (top), RK4 (middle) and our DMM transition scheme (bottom) for the PWS three species Lotka-Voltera system

    Figure 7.  The sign of the switching function $ g $ for the three methods are plotted versus time, corresponding tok__ge Figure 6. In this case, the solution computed using RK2 makes spurious transitions (denoted by red "x") while the RK4 and DMM solutions do not

    Figure 8.  Comparison of error in conserved quantity versus time, as computed by RK2 (top), RK4 (middle) and our DMM transition scheme (bottom) for the PWS three species Lotka-Voltera system when the solution makes several transitions

    Figure 9.  The sign of the switching function $ g $ for the three methods are plotted versus time, corresponding to Figure 8. All three methods make initial transitions and then RK2 makes further spurious transitions (denoted by red "x")

    Table  .   

    Algorithm 1: Mannshardt's transition scheme (uniform time steps)
    Given $ \tau,t_0,\mathit{\boldsymbol{x}}_0 $.
    for $ k=0,1,2,\dots $ do
    end
     | Show Table
    DownLoad: CSV
  • [1] V. Acary, O. Bonnefon and B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, Lect. Notes Electr. Eng., 69 Springer, Dordrecht, 2011. doi: 10.1007/978-90-481-9681-4.
    [2] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems, Lecture Notes in Applied and Computational Mechanics, Springer, 2008.
    [3] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems, Theory and applications Appl. Math. Sci., 163 Springer-Verlag London, Ltd., London, 2008.
    [4] L. Dieci and L. Lopez, A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side, J. Comput. Appl. Math., 236 (2012), 3967-3991.  doi: 10.1016/j.cam.2012.02.011.
    [5] F. Fekak, M. Brun, A. Gravouil, et al., A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics, Comput Mech, 60 (2017), 1-21.
    [6] R. C. FetecauJ. E. MarsdenM. Ortiz and M. West, Nonsmooth Lagrangian mechanics and variational collision integrators, SIAM Journal on Applied Dynamical Systems, 2 (2003), 381-416.  doi: 10.1137/S1111111102406038.
    [7] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Math. Appl. (Soviet Ser.), 18 Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.
    [8] C. W. Gear and O. Østerby, Solving ordinary differential equations with discontinuities, ACM Trans. Math. Software, 10 (1984), 23-44.  doi: 10.1145/356068.356071.
    [9] C. Gormezano, J.-C. Nave and A. T. S. Wan, Conservative integrators for vortex blob methods on the plane, Journal of Computational Physics, 469 (2022), 111357, 26 pp. doi: 10.1016/j.jcp.2022.111357.
    [10] A. Gravouil, F. Fekak and M. Brun, On Heterogeneous Asynchronous Variational Time Integrators-Application to Coupling Method, in AIP Conference Proceedings, vol. 2849, AIP Publishing, 2023.
    [11] N. Guglielmi and E. Hairer, Solutions leaving a codimension-2 sliding, Nonlinear Dynam., 88 (2017), 1427-1439.  doi: 10.1007/s11071-016-3320-1.
    [12] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-preserving algorithms for ordinary differential equations. Second edition Springer Ser. Comput. Math., 31 Springer-Verlag, Berlin, 2006.
    [13] D. HarmonE. VougaB. SmithR. Tamstorf and E. Grinspun, Asynchronous contact mechanics, ACM Transactions on Graphics, 28 (2009), 1-12. 
    [14] C. Hesch and P. Betsch, A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems, International Journal for Numerical Methods in Engineering, 77 (2009), 1468-1500.  doi: 10.1002/nme.2466.
    [15] C. KaneE. A. RepettoM. Ortiz and J. E. Marsden, Finite element analysis of nonsmooth contact, Computer Methods in Applied Mechanics and Engineering, 180 (1999), 1-26.  doi: 10.1016/S0045-7825(99)00034-1.
    [16] F. Kang and Z.-J. Shang, Volume-preserving algorithms for source-free dynamical systems, Numerische Mathematik, 71 (1995), 451-463.  doi: 10.1007/s002110050153.
    [17] R. Mannshardt, One-step methods of any order for ordinary differential equations with discontinuous right-hand sides, Numer. Math., 31 (1978/79), 131-152.  doi: 10.1007/BF01397472.
    [18] G. McGregor and A. T. S. Wan, Conservative Hamiltonian Monte Carlo, arXiv: 2206.06901, 2022.
    [19] E. Plahte and S. Kjøglum, Analysis and generic properties of gene regulatory networks with graded response functions, Phys. D, 201 (2005), 150-176.  doi: 10.1016/j.physd.2004.11.014.
    [20] R. Schimming, Conservation laws for Lotka–Volterra models, Math. Methods Appl. Sci., 26 (2003), 1517-1528.  doi: 10.1002/mma.431.
    [21] E. Schulz and A. T. S. Wan, Minimal $\ell^2$ Norm Discrete Multiplier Method, arXiv: 2208.12355, 2022.
    [22] A. T. S. WanA. BihloN. Alexander and J.-C. Nave, Conservative methods for dynamical systems, SIAM Journal on Numerical Analysis, 55 (2017), 2255-2285.  doi: 10.1137/16M110719X.
    [23] A. T. S. WanA. Bihlo and J.-C. Nave, Conservative integrators for many–body problems, Journal of Computational Physics, 466 (2022), 111417.  doi: 10.1016/j.jcp.2022.111417.
    [24] A. T. S. WanA. Bihlo and J.-C. Nave, The multiplier method to construct conservative finite difference schemes for ordinary and partial differential equations, SIAM Journal on Numerical Analysis, 54 (2016), 86-119.  doi: 10.1137/140997944.
    [25] A. T. S. Wan and J.-C. Nave, On the arbitrarily long-term stability of conservative methods, SIAM Journal on Numerical Analysis, 56 (2018), 2751-2775.  doi: 10.1137/16M1085929.
    [26] N. Wojtalewicz, Discontinuous Differential Equations, PhD thesis, University of Illinois Urbana-Champagin, Urbana-Champaign, IL, May 2022., Available at https://www.ideals.illinois.edu/items/125350.
  • 加载中

Figures(9)

Tables(1)

SHARE

Article Metrics

HTML views(921) PDF downloads(294) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return