\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Lie derivative and Noether's theorem on the aromatic bicomplex for the study of volume-preserving numerical integrators

The work of the author was supported by the Research Council of Norway through project 302831 "Computational Dynamics and Stochastics on Manifolds" (CODYSMA).

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • The aromatic bicomplex is an algebraic tool based on aromatic Butcher trees and used in particular for the explicit description of volume-preserving affine-equivariant numerical integrators. The present work defines new tools inspired from variational calculus such as the Lie derivative, different concepts of symmetries, and Noether's theory in the context of aromatic forests. The approach allows to draw a correspondence between aromatic volume-preserving methods and symmetries on the Euler-Lagrange complex, to write Noether's theorem in the aromatic context, and to describe the aromatic B-series of volume-preserving methods explicitly with the Lie derivative.

    Mathematics Subject Classification: Primary: 58E30, 58J10, 05C05; Secondary: 41A58, 37M15, 58A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The augmented aromatic bicomplex

  • [1] A. AbdulleG. Vilmart and K. C. Zygalakis, Long time accuracy of Lie-Trotter splitting methods for {L}angevin dynamics, SIAM J. Numer. Anal., 53 (2015), 1-16.  doi: 10.1137/140962644.
    [2] I. M. Anderson, The variational bicomplex, Unpublished, 1989.
    [3] I. M. Anderson, Introduction to the variational bicomplex, In Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), 132 (1992), 51-73. doi: 10.1090/conm/132/1188434.
    [4] V. I. Arnold, Mathematical Methods of Classical Mechanics, 2$^{nd}$ edition, Grad. Texts in Math., 60 Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.
    [5] V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, 3$^{rd}$ edition, Encyclopaedia Math. Sci., 3 Springer-Verlag, Berlin, 2006.
    [6] G. Bogfjellmo, Algebraic structure of aromatic B-series, J. Comput. Dyn., 6 (2019), 199-222.  doi: 10.3934/jcd.2019010.
    [7] G. Bogfjellmo, E. Celledoni, R. McLachlan, B. Owren and R. Quispel, Using aromas to search for preserved measures and integrals in Kahan's method, Submitted, 2022.
    [8] E. Bronasco, Exotic B-series and S-series: Algebraic structures and order conditions for invariant measure sampling, Submitted, 2022.
    [9] E. Bronasco and A. Laurent, The Hopf algebra structures of exotic aromatic Butcher series and their applications in stochastic numerical analysis, In preparation, 2023.
    [10] J. C. Butcher, An algebraic theory of integration methods, Math. Comp., 26 (1972), 79-106.  doi: 10.2307/2004720.
    [11] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Ltd., Chichester, third edition, 2016. doi: 10.1002/9781119121534.
    [12] J. C. Butcher, B-Series: Algebraic Analysis of Numerical Methods, Springer, 2021. doi: 10.1007/978-3-030-70956-3.
    [13] D. CalaqueK. Ebrahimi-Fard and D. Manchon, Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math., 47 (2011), 282-308.  doi: 10.1016/j.aam.2009.08.003.
    [14] E. CelledoniC. EvripidouD. I. McLarenB. OwrenG. R. W. Quispel and B. K. Tapley, Detecting and determining preserved measures and integrals of birational maps, Journal of Computational Dynamics, 9 (2022), 553-574.  doi: 10.3934/jcd.2022014.
    [15] P. ChartierE. Hairer and G. Vilmart, Algebraic structures of B-series, Found. Comput. Math., 10 (2010), 407-427.  doi: 10.1007/s10208-010-9065-1.
    [16] P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA J. Numer. Anal., 27 (2007), 381-405.  doi: 10.1093/imanum/drl039.
    [17] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199 (1998), 203-242.  doi: 10.1007/s002200050499.
    [18] G. FløystadD. Manchon and H. Z. Munthe-Kaas, The universal pre-Lie-Rinehart algebras of aromatic trees, Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, 366 (2021), 137-159.  doi: 10.1007/978-3-030-78346-4_9.
    [19] E. Hairer, Backward error analysis for multistep methods, Numer. Math., 84 (1999), 199-232.  doi: 10.1007/s002110050469.
    [20] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, volume 31 of Springer Series in Computational Mathematics, Springer Ser. Comput. Math., 31 Springer-Verlag, Berlin, 2006.
    [21] E. Hairer and G. Wanner, On the Butcher group and general multi-value methods, Computing (Arch. Elektron. Rechnen), 13 (1974), 1-15.  doi: 10.1007/bf02268387.
    [22] R. Hirota and K. Kimura, Discretization of the Euler top, J. Phys. Soc. Japan, 69 (2000), 627-630.  doi: 10.1143/JPSJ.69.627.
    [23] R. Hirota and K. Kimura, Discretization of the Lagrange top, J. Phys. Soc. Japan, 69 (2000), 3193-3199.  doi: 10.1143/JPSJ.69.3193.
    [24] A. IserlesG. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT Numer. Math., 47 (2007), 351-378.  doi: 10.1007/s10543-006-0114-8.
    [25] W. Kahan, Unconventional numerical methods for trajectory calculations, Unpublished Lecture Notes, 1 (1993).
    [26] F. Kang and Z. J. Shang, Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71 (1995), 451-463.  doi: 10.1007/s002110050153.
    [27] A. Laurent, Algebraic Tools and Multiscale Methods for the Numerical Integration of Stochastic Evolutionary Problems, PhD thesis, University of Geneva, 2021.
    [28] A. Laurent, R. I. McLachlan, H. Z. Munthe-Kaas and O. Verdier, The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators, Forum Math. Sigma, 11 (2023, ) Paper No. e69, 38 pp. doi: 10.1017/fms.2023.63.
    [29] A. Laurent and H. Z. Munthe-Kaas, The universal equivariance properties of exotic aromatic B-series, Submitted, arXiv: 2305.10993, 2023.
    [30] A. Laurent and G. Vilmart, Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs, Math. Comp., 89 (2020), 169-202.  doi: 10.1090/mcom/3455.
    [31] A. Laurent and G. Vilmart, Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds, Found. Comput. Math., 22 (2022), 649-695.  doi: 10.1007/s10208-021-09495-y.
    [32] J. M. Lee, Introduction to Smooth Manifolds, 2$^{nd}$ edition, Springer, New York, 2013.
    [33] A. Lejay, Constructing general rough differential equations through flow approximations, Electron. J. Probab., 27 (2022), Paper No. 7, 24 pp. doi: 10.1214/21-ejp717.
    [34] D. Manchon and A. Saïdi, Lois pré-Lie en interaction, Comm. Algebra, 39 (2011), 3662-3680.  doi: 10.1080/00927872.2010.510813.
    [35] E. L. MansfieldA Practical Guide To the Invariant Calculus, Cambridge Monogr. Appl. Comput. Math., 26 Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511844621.
    [36] R. I. McLachlanK. ModinH. Munthe-Kaas and O. Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math., 133 (2016), 599-622.  doi: 10.1007/s00211-015-0753-2.
    [37] R. I. McLachlanK. ModinH. Munthe-Kaas and O. Verdier, Butcher series: A story of rooted trees and numerical methods for evolution equations, Asia Pac. Math. Newsl., 7 (2017), 1-11. 
    [38] H. Z. Munthe-Kaas and K. K. Føllesdal, Lie-Butcher series, geometry, algebra and computation, In Discrete Mechanics, Geometric Integration and Lie-Butcher Series, 267 (2018), 71-113. doi: 10.1007/978-3-030-01397-4_3.
    [39] H. Munthe-Kaas and O. Verdier, Aromatic Butcher series, Found. Comput. Math., 16 (2016), 183-215.  doi: 10.1007/s10208-015-9245-0.
    [40] E. Noether, Invariant variation problems, Transport Theory Statist. Phys., 1 (1971), 186-207.  doi: 10.1080/00411457108231446.
    [41] P. J. Olver, Applications of Lie Groups to Differential Equations, 2$^{nd}$ edition, Grad. Texts in Math., 107 Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4350-2.
    [42] J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, J. K-Theory, 2 (2008), 147-167.  doi: 10.1017/is008001011jkt037.
    [43] L. Rahm, An operadic approach to substitution in Lie-Butcher series, Forum Math. Sigma, 10 (2022), Paper No. e20, 29 pp. doi: 10.1017/fms.2022.12.
    [44] A. Saïdi, On a pre-Lie algebra defined by insertion of rooted trees, Lett. Math. Phys., 92 (2010), 181-196.  doi: 10.1007/s11005-010-0377-5.
    [45] A. Saïdi, Algèbres de Hopf d'arbres et Structures pré-Lie, PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2011.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1317) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return