[1]
|
T. Alamo, J. Bravo and E. Camacho, Guaranteed state estimation by zonotopes, Automatica J. IFAC, 41 (2005), 1035-1043.
doi: 10.1016/j.automatica.2004.12.008.
|
[2]
|
M. Althoff, O. Stursberg and M. Buss, Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization, Proceedings of the 47th IEEE Conference on Decision and Control, (2008), 4042-4048.
doi: 10.1109/CDC.2008.4738704.
|
[3]
|
M. Althoff, O. Stursberg and M. Buss, Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes, Nonlinear Analysis: Hybrid Systems, 4 (2010), 233-249.
doi: 10.1016/j.nahs.2009.03.009.
|
[4]
|
J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren Math. Wiss., 264. Springer-Verlag Berlin, Heidelberg, 1984.
doi: 10.1007/978-3-642-69512-4.
|
[5]
|
R. Baier, Mengenwertige Integration und Die Diskrete Approximation Erreichbarer Mengen [Set-Valued Integration and the Discrete Approximation of Attainable Sets], PhD thesis, Universität Bayreuth, 1995.
|
[6]
|
R. Baier, C. Büskens, I. Chahma and M. Gerdts, Approximation of reachable sets by direct solution methods for optimal control problems, Optim. Methods Softw., 22 (2007), 433-452.
doi: 10.1080/10556780600604999.
|
[7]
|
R. Baier, I. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions, SIAM J. Optim., 18 (2007), 1004-1026.
doi: 10.1137/060661867.
|
[8]
|
R. Baier, M. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms, Numer. Algebra Control Optim., 3 (2013), 519-548.
doi: 10.3934/naco.2013.3.519.
|
[9]
|
W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions, Computing, 81 (2007), 91-106.
doi: 10.1007/s00607-007-0240-4.
|
[10]
|
W.-J. Beyn and J. Rieger, The implicit euler scheme for one-sided lipschitz differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409-428.
doi: 10.3934/dcdsb.2010.14.409.
|
[11]
|
R. Colombo, T. Lorenz and N. Pogodaev, On the modeling of moving populations through set evolution equations, Discrete Contin. Dyn. Syst., 35 (2015), 73-98.
doi: 10.3934/dcds.2015.35.73.
|
[12]
|
R. Colombo and N. Pogodaev, On the control of moving sets: Positive and negative confinement results, SIAM J. Control Optim., 51 (2013), 380-401.
doi: 10.1137/12087791X.
|
[13]
|
T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions, SIAM J. Control Optim., 36 (1998), 780-796.
doi: 10.1137/S0363012995293694.
|
[14]
|
A. Dontchev and E. Farkhi, Error estimates for discretized differential inclusions, Computing, 41 (1989), 349-358.
doi: 10.1007/BF02241223.
|
[15]
|
M. Gerdts and I. Xausa, Avoidance trajectories using reachable sets and parametric sensitivity analysis, System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol., Springer Berlin Heidelberg, 391 (2013), 491-500.
doi: 10.1007/978-3-642-36062-6_49.
|
[16]
|
A. Girard, C. Le Guernic and O. Maler, Efficient computation of reachable sets of linear time-invariant systems with inputs, Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci., 3927 (2006), 257-271.
doi: 10.1007/11730637_21.
|
[17]
|
E. Goubault and S. Putot, Robust under-approximations and application to reachability of non-linear control systems with disturbances, IEEE Control Systems Letters, 4 (2020), 928-933.
doi: 10.1109/LCSYS.2020.2997261.
|
[18]
|
N. Kochdumper and M. Althoff, Sparse polynomial zonotopes: A novel set representation for reachability analysis, IEEE Trans. Automat. Control, 66 (2021), 4043-4058.
doi: 10.1109/TAC.2020.3024348.
|
[19]
|
V. Komarov and K. Pevchikh, A method for the approximation of attainability sets of differential inclusions with given accuracy, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 153-157.
|
[20]
|
E. Lakatos and M. P. H. Stumpf, Control mechanisms for stochastic biochemical systems via computation of reachable sets, R. Soc. open sci., 4 (2017), 160790, 14 pp.
doi: 10.1098/rsos.160790.
|
[21]
|
Y. Meng, Z. Qiu, M. Waez and C. Fan, Case studies for computing density of reachable states for safe autonomous motion planning, NASA Formal Methods: 14th International Symposium, (2022), 251-271.
doi: 10.1007/978-3-031-06773-0_13.
|
[22]
|
B. Mordukhovich and Y. Tian, Implicit Euler approximation and optimization of one-sided Lipschitzian differential inclusions, Nonlinear Analysis and Optimization, Contemp. Math., Amer. Math. Soc., Providence, RI, 659 (2016), 165-188.
doi: 10.1090/conm/659/13152.
|
[23]
|
F. Parise, M. Valcher and J. Lygeros, Computing the projected reachable set of stochastic biochemical reaction networks modeled by switched affine systems, IEEE Trans. Automat. Control, 63 (2018), 3719-3734.
doi: 10.1109/TAC.2018.2798800.
|
[24]
|
W. Riedl, R. Baier and M. Gerdts, Optimization-based subdivision algorithm for reachable sets, J. Comput. Dyn., 8 (2021), 99-130.
doi: 10.3934/jcd.2021005.
|
[25]
|
J. Rieger, Semi-implicit euler schemes for ordinary differential inclusions, SIAM Journal on Numerical Analysis, 52 (2014), 895-914.
doi: 10.1137/110842727.
|
[26]
|
J. Rieger, Robust boundary tracking for reachable sets of nonlinear differential inclusions, Found. Comput. Math., 15 (2015), 1129-1150.
doi: 10.1007/s10208-014-9218-8.
|
[27]
|
J. Rieger, The Euler scheme for state constrained ordinary differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2729-2744.
doi: 10.3934/dcdsb.2016070.
|
[28]
|
M. Rungger and M. Zamani, Accurate reachability analysis of uncertain nonlinear systems, Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control, (2018), 61-70.
doi: 10.1145/3178126.3178127.
|
[29]
|
M. Sandberg, Convergence of the forward euler method for nonconvex differential inclusions, SIAM Journal on Numerical Analysis, 47 (2008), 308-320.
doi: 10.1137/070686093.
|
[30]
|
M. Serry and G. Reissig, Overapproximating reachable tubes of linear time-varying systems, IEEE Trans. Automat. Control, 67 (2022), 443-450.
doi: 10.1109/TAC.2021.3057504.
|
[31]
|
L. Shao, F. Zhao and Y. Cong, Approximation of convex bodies by multiple objective optimization and an application in reachable sets, Optimization, 67 (2018), 783-796.
doi: 10.1080/02331934.2018.1426583.
|
[32]
|
G. Smirnov, Introduction to the Theory of Differential Inclusions, Grad. Stud. Math., 41. American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/gsm/041.
|
[33]
|
V. Veliov, Discrete approximations of integrals of multivalued mappings, C. R. Acad. Bulgare Sci., 42 (1989), 51-54.
|
[34]
|
V. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.
doi: 10.1016/0167-6911(89)90073-X.
|
[35]
|
V. Veliov, On the time-discretization of control systems, SIAM J. Control Optim., 35 (1997), 1470-1486.
doi: 10.1137/S0363012995288987.
|