\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Towards optimal space-time discretization for reachable sets of nonlinear control systems

  • *Corresponding author: Kyria Wawryk

    *Corresponding author: Kyria Wawryk
Abstract / Introduction Full Text(HTML) Figure(6) / Table(3) Related Papers Cited by
  • Reachable sets of nonlinear control systems can in general only be approximated numerically, and these approximations are typically very expensive to compute. In this paper, we explore a strategy for choosing the temporal and spatial discretizations of Euler's method for reachable set computation in a non-uniform way to improve the performance of the method.

    Mathematics Subject Classification: 93B03, 65L50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Step-sizes for system (42) with parameters (44). Discretization produced by Algorithm 1 shown in the dashed line, and Algorithm 2 in the solid line

    Figure 2.  Cumulative contributions $ \sigma_E $ (dashed line) and $ \sigma_C $ (solid line) from (45) and (46) for system (42) with parameters (44)

    Figure 3.  Relative error $ \delta_C $ from (47) plotted against error $ E $ from (5) when Algorithm 2 is applied to system (42). Values for $ L = 1, 2, 3, 4 $ marked using circles, squares, triangles and diamonds, respectively

    Figure 4.  Reachable sets generated by Algorithm 2 applied to system (48) with $ \varepsilon_{\ell_{max}} = 2^{-7} $. Resolution adjusted for printing purposes

    Figure 5.  Stepsizes for system (48) with $ \varepsilon = 2^{-7} $. Discretization produced by Algorithm 1 shown in the dashed line, and Algorithm 2 in the solid line

    Figure 6.  Cumulative contributions $ \sigma_E $ (dashed line) and $ \sigma_C $ (solid line) from (45) and (46) for system (48) with $ \varepsilon = 2^{-7} $

    Table 1.  Time to run Algorithm 2 for system (42) with parameters (44) and $ \ell_{\max} = 15 $ split based on use

    $ \boldsymbol{\ell} $ 11 12 13 14 15
    $ \varepsilon_\ell $ 6.4E1 3.2E1 1.6E1 8.0E0 4.0E0
    time [s] for reachable set computation (lines 5-17) 4.4E-1 2.7E0 7.0E1 2.8E3 2.4E5
    time [s] for refinement of discretization (lines 19-26) 7.0E-4 1.4E-3 4.3E-3 1.4E-2 8.0E-2
     | Show Table
    DownLoad: CSV

    Table 2.  Number of grid points computed by Algorithms 1 and 2 to achieve error tolerance (5) when applied to system (42). The high complexity of Algorithm 1 forced us to infer the values in the cells coloured in red using a workaround

    L=1 $ \boldsymbol{ \varepsilon} $ 2.50E-1 1.25E-1 6.25E-2 3.13E-2 1.56E-2
    d=1 Alg1 5.8E3 8.3E4 1.2E6 2.0E7 3.1E8
    Alg2 1.7E3 1.9E4 2.5E5 3.6E6 5.4E7
    d=2 Alg1 2.7E6 2.8E8 3.3E10 4.1E12 5.1E14
    Alg2 1.1E5 6.2E6 5.5E8 5.7E10 6.6E12
    L=2 $\varepsilon $ 2.00E0 1.00E0 5.00E-1 2.50E-1 1.25E-1
    d=1 Alg1 1.8E6 2.9E7 4.7E8 7.6E9 1.2E11
    Alg2 4.1E3 5.0E4 6.1E5 8.7E6 1.3E8
    d=2 Alg1 1.7E11 2.3E13 3.1E15 4.0E17 5.1E19
    Alg2 2.5E5 1.7E7 1.4E9 1.4E11 1.5E13
    L=3 $ \varepsilon $ 1.60E1 8.00E0 4.00E0 2.00E0 1.00E0
    d=1 Alg1 9.4E7 1.6E9 2.6E10 4.3E11 6.9E12
    Alg2 2.6E3 2.9E4 3.3E5 4.2E6 5.8E7
    d=2 Alg1 4.2E14 6.1E16 8.4E18 1.1E21 1.5E23
    Alg2 1.5E5 3.9E6 2.8E8 2.3E10 2.2E12
    L=4 $ \varepsilon $ 6.40E1 3.20E1 1.60E1 8.00E0 4.00E0
    d=1 Alg1 3.8E10 6.4E11 1.0E13 1.7E14 2.7E15
    Alg2 1.2E4 1.1E5 1.2E6 1.5E7 2.1E8
    d=2 Alg1 3.5E19 4.9E21 6.6E23 8.7E25 1.1E28
    Alg2 6.6E5 2.8E7 1.7E9 1.3E11 1.3E13
     | Show Table
    DownLoad: CSV

    Table 3.  Number of grid points computed by Algorithms 1 and 2 to achieve error tolerance $ \varepsilon $ for system (48)

    $ \boldsymbol{ \varepsilon} $ 1.25E-1 6.25E-2 3.13E-2 1.56E-2 7.81E-3
    Algorithm 1 7.8E5 3.3E7 1.9E9 1.1E11 7.0E12
    Algorithm 2 9.6E4 4.8E6 1.6E8 8.4E9 4.6E11
     | Show Table
    DownLoad: CSV
  • [1] T. AlamoJ. Bravo and E. Camacho, Guaranteed state estimation by zonotopes, Automatica J. IFAC, 41 (2005), 1035-1043.  doi: 10.1016/j.automatica.2004.12.008.
    [2] M. Althoff, O. Stursberg and M. Buss, Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization, Proceedings of the 47th IEEE Conference on Decision and Control, (2008), 4042-4048. doi: 10.1109/CDC.2008.4738704.
    [3] M. AlthoffO. Stursberg and M. Buss, Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes, Nonlinear Analysis: Hybrid Systems, 4 (2010), 233-249.  doi: 10.1016/j.nahs.2009.03.009.
    [4] J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren Math. Wiss., 264. Springer-Verlag Berlin, Heidelberg, 1984. doi: 10.1007/978-3-642-69512-4.
    [5] R. Baier, Mengenwertige Integration und Die Diskrete Approximation Erreichbarer Mengen [Set-Valued Integration and the Discrete Approximation of Attainable Sets], PhD thesis, Universität Bayreuth, 1995.
    [6] R. BaierC. BüskensI. Chahma and M. Gerdts, Approximation of reachable sets by direct solution methods for optimal control problems, Optim. Methods Softw., 22 (2007), 433-452.  doi: 10.1080/10556780600604999.
    [7] R. BaierI. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions, SIAM J. Optim., 18 (2007), 1004-1026.  doi: 10.1137/060661867.
    [8] R. BaierM. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms, Numer. Algebra Control Optim., 3 (2013), 519-548.  doi: 10.3934/naco.2013.3.519.
    [9] W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions, Computing, 81 (2007), 91-106.  doi: 10.1007/s00607-007-0240-4.
    [10] W.-J. Beyn and J. Rieger, The implicit euler scheme for one-sided lipschitz differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409-428.  doi: 10.3934/dcdsb.2010.14.409.
    [11] R. ColomboT. Lorenz and N. Pogodaev, On the modeling of moving populations through set evolution equations, Discrete Contin. Dyn. Syst., 35 (2015), 73-98.  doi: 10.3934/dcds.2015.35.73.
    [12] R. Colombo and N. Pogodaev, On the control of moving sets: Positive and negative confinement results, SIAM J. Control Optim., 51 (2013), 380-401.  doi: 10.1137/12087791X.
    [13] T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions, SIAM J. Control Optim., 36 (1998), 780-796.  doi: 10.1137/S0363012995293694.
    [14] A. Dontchev and E. Farkhi, Error estimates for discretized differential inclusions, Computing, 41 (1989), 349-358.  doi: 10.1007/BF02241223.
    [15] M. Gerdts and I. Xausa, Avoidance trajectories using reachable sets and parametric sensitivity analysis, System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol., Springer Berlin Heidelberg, 391 (2013), 491-500.  doi: 10.1007/978-3-642-36062-6_49.
    [16] A. GirardC. Le Guernic and O. Maler, Efficient computation of reachable sets of linear time-invariant systems with inputs, Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci., 3927 (2006), 257-271.  doi: 10.1007/11730637_21.
    [17] E. Goubault and S. Putot, Robust under-approximations and application to reachability of non-linear control systems with disturbances, IEEE Control Systems Letters, 4 (2020), 928-933.  doi: 10.1109/LCSYS.2020.2997261.
    [18] N. Kochdumper and M. Althoff, Sparse polynomial zonotopes: A novel set representation for reachability analysis, IEEE Trans. Automat. Control, 66 (2021), 4043-4058.  doi: 10.1109/TAC.2020.3024348.
    [19] V. Komarov and K. Pevchikh, A method for the approximation of attainability sets of differential inclusions with given accuracy, Zh. Vychisl. Mat. i Mat. Fiz., 31 (1991), 153-157. 
    [20] E. Lakatos and M. P. H. Stumpf, Control mechanisms for stochastic biochemical systems via computation of reachable sets, R. Soc. open sci., 4 (2017), 160790, 14 pp. doi: 10.1098/rsos.160790.
    [21] Y. Meng, Z. Qiu, M. Waez and C. Fan, Case studies for computing density of reachable states for safe autonomous motion planning, NASA Formal Methods: 14th International Symposium, (2022), 251-271. doi: 10.1007/978-3-031-06773-0_13.
    [22] B. Mordukhovich and Y. Tian, Implicit Euler approximation and optimization of one-sided Lipschitzian differential inclusions, Nonlinear Analysis and Optimization, Contemp. Math., Amer. Math. Soc., Providence, RI, 659 (2016), 165-188.  doi: 10.1090/conm/659/13152.
    [23] F. PariseM. Valcher and J. Lygeros, Computing the projected reachable set of stochastic biochemical reaction networks modeled by switched affine systems, IEEE Trans. Automat. Control, 63 (2018), 3719-3734.  doi: 10.1109/TAC.2018.2798800.
    [24] W. RiedlR. Baier and M. Gerdts, Optimization-based subdivision algorithm for reachable sets, J. Comput. Dyn., 8 (2021), 99-130.  doi: 10.3934/jcd.2021005.
    [25] J. Rieger, Semi-implicit euler schemes for ordinary differential inclusions, SIAM Journal on Numerical Analysis, 52 (2014), 895-914.  doi: 10.1137/110842727.
    [26] J. Rieger, Robust boundary tracking for reachable sets of nonlinear differential inclusions, Found. Comput. Math., 15 (2015), 1129-1150.  doi: 10.1007/s10208-014-9218-8.
    [27] J. Rieger, The Euler scheme for state constrained ordinary differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2729-2744.  doi: 10.3934/dcdsb.2016070.
    [28] M. Rungger and M. Zamani, Accurate reachability analysis of uncertain nonlinear systems, Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control, (2018), 61-70. doi: 10.1145/3178126.3178127.
    [29] M. Sandberg, Convergence of the forward euler method for nonconvex differential inclusions, SIAM Journal on Numerical Analysis, 47 (2008), 308-320.  doi: 10.1137/070686093.
    [30] M. Serry and G. Reissig, Overapproximating reachable tubes of linear time-varying systems, IEEE Trans. Automat. Control, 67 (2022), 443-450.  doi: 10.1109/TAC.2021.3057504.
    [31] L. ShaoF. Zhao and Y. Cong, Approximation of convex bodies by multiple objective optimization and an application in reachable sets, Optimization, 67 (2018), 783-796.  doi: 10.1080/02331934.2018.1426583.
    [32] G. Smirnov, Introduction to the Theory of Differential Inclusions, Grad. Stud. Math., 41. American Mathematical Society, Providence, RI, 2002. doi: 10.1090/gsm/041.
    [33] V. Veliov, Discrete approximations of integrals of multivalued mappings, C. R. Acad. Bulgare Sci., 42 (1989), 51-54. 
    [34] V. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.  doi: 10.1016/0167-6911(89)90073-X.
    [35] V. Veliov, On the time-discretization of control systems, SIAM J. Control Optim., 35 (1997), 1470-1486.  doi: 10.1137/S0363012995288987.
  • 加载中

Figures(6)

Tables(3)

SHARE

Article Metrics

HTML views(1028) PDF downloads(274) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return