The manuscript deals with the analytical study of the "practical" stability of linear time dependent descriptor perturbed systems. The paper works out and proves the sufficient conditions (posed as LMIs) for practical stability of perturbed singular systems. The Gamidov's type integral inequality is used as a tool in the proof of the sufficient conditions of practical stability for perturbed singular systems. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
Citation: |
[1] |
T. Berger, Bohl exponent for time–varying linear differential–algebraic equations, International Journal of Control, 10 (2012), 1433-1451.
doi: 10.1080/00207179.2012.688872.![]() ![]() ![]() |
[2] |
T. Berger and A. Ilchmann, On the standard canonical form of time–varying linear DAEs, Quarterly of Applied Mathematics, 71 (2013), 69-87.
doi: 10.1090/S0033-569X-2012-01285-1.![]() ![]() ![]() |
[3] |
T. Berger and A. Ilchmann, On stability of time–varying linear differential–algebraic equations, International Journal of Control, 86 (2013), 1060-1076.
doi: 10.1080/00207179.2013.773087.![]() ![]() ![]() |
[4] |
A. BenAbdallah and W. Hdidi, Improving the performance of semiglobal output controllers for nonlinear systems, Kybernetika, 53 (2017), 296-330.
doi: 10.14736/kyb-2017-2-0296.![]() ![]() ![]() |
[5] |
A. BenAbdallah and W. Hdidi, Uniting two local output controllers for linear system subject to input saturation: LMI approach, Journal of the Franklin Institute, 355 (2018), 6969-6991.
doi: 10.1016/j.jfranklin.2018.08.001.![]() ![]() ![]() |
[6] |
A. Benabdallah, I. Ellouze and M. A. Hammami, Practical stability of nonlinear time–varying cascade systems, Journal Dynamical Control Systems, 15 (2009), 45-62.
doi: 10.1007/s10883-008-9057-5.![]() ![]() ![]() |
[7] |
A. Ben Makhlouf, M. A. Hammami and M. Hammi, A new approach for stabilization of control affine systems via integral inequalities, IMA Journal of Mathematical Control and Information, 39 (2022), 837-860.
doi: 10.1093/imamci/dnac007.![]() ![]() ![]() |
[8] |
P. Benner and S. W. R. Werner, Model reduction of descriptor systems with the MORLAB toolbox, IFAC-PapersOnLine, 51 (2018), 547-552.
![]() |
[9] |
S. L. Campbell, Singular Systems of Differential Equations, Res. Notes in Math., 40. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.
![]() ![]() |
[10] |
S. L. Campbell, Singular Systems of Differential Equations. II, Res. Notes in Math., 61. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.
![]() ![]() |
[11] |
T. Caraballo, F. Ezzine and M. A. Hammami, On the exponential stability of stochastic perturbed singular systems in mean square, Applied Mathematics and Optimization, 84 (2021), 2923-2945.
doi: 10.1007/s00245-020-09734-8.![]() ![]() ![]() |
[12] |
T. Caraballo, F. Ezzine and M. A. Hammami, New stability criteria for stochastic perturbed singular systems in mean square, Nonlinear Dynamics, 1 (2021), 241-256.
doi: 10.1007/s11071-021-06620-y.![]() ![]() |
[13] |
T. Caraballo, F. Ezzine and M. A. Hammami, A new result on stabilization analysis for stochastic nonlinear affine systems via Gamidov's inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 116 (2022), 1-24.
doi: 10.1007/s13398-022-01320-7.![]() ![]() ![]() |
[14] |
M. Corless, Guaranteed rates of exponential convergence for uncertain systems, Journal of Optimization Theory and Applications, 64 (1990), 481-494.
doi: 10.1007/BF00939420.![]() ![]() ![]() |
[15] |
L. Dai, Singular Control Systems, Lect. Notes Control Inf. Sci., 118. Springer-Verlag, Berlin, 1989.
doi: 10.1007/BFb0002475.![]() ![]() ![]() |
[16] |
D. Lj. Debeljkovic, B. Jovanović and V. Drakulić, Singular system theory in chemical engineering theory: Stability in the sense of Lyapunov: A survey, Hemijska Industrija, 6 (2001), 260-272.
![]() |
[17] |
F. Ezzine and M. A. Hammami, Growth conditions for the stability of a class of time–varying perturbed singular systems, Kybernetika, 58 (2022), 1-24.
doi: 10.14736/kyb-2022-1-0001.![]() ![]() ![]() |
[18] |
S. G. Gamidov, Certain integral inequalities for boundary value problems of differential equations, Differentsialnye Uravneniya, 5 (1969), 463-472.
![]() ![]() |
[19] |
S. F. Hafstein1, C. M. Kellett and H. Li, Computing continuous and piecewise affine lyapunov functions for nonlinear systems, Journal of Computational Dynamics, 2 (2015), 227-246.
doi: 10.3934/jcd.2015004.![]() ![]() ![]() |
[20] |
V. Lakshmikantham, S. Leela and A. A. Martynyuk, Practical Stability of Nonlinear Systems, World Scientific, 1990.
doi: 10.1142/1192.![]() ![]() ![]() |
[21] |
H. K. Khalil, Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
![]() ![]() |
[22] |
P. V. Kokotovic, A. Bensoussan and G. L. Blankenship, Singular Perturbations and Asymptotic Analysis in Control Systems, Lecture Notes in Control and Information Sciences, 1987.
doi: 10.1007/BFb0007175.![]() ![]() |
[23] |
D. H. Ownes and D. Lj. Debeljković, Stability of linear descriptor systems: A geometric analysis, IMA Journal of Mathematical Control and Information, 2 (1985), 139-151.
![]() |
[24] |
Q. C. Pham, N. Tabareau and J. E. Slotine, A contraction theory approach to stochastic Incremental stability, IEEE Transcactions on Automatic Control, 54 (2009), 816-820.
doi: 10.1109/TAC.2008.2009619.![]() ![]() ![]() |
[25] |
E. D. Sontag, Input to state stability: Basic concepts and results, Lecture Notes Math, 12 (2008), 163-220.
doi: 10.1007/978-3-540-77653-6_3.![]() ![]() ![]() |
The initial response of the nominal descriptor system (4.2), with the initial condition
The initial response of the perturbed singular system (4.1), with the initial condition
The initial response of the nominal descriptor system (4.4), with the initial condition
The initial response of the perturbed descriptor system (4.3), with the initial condition