[1]
|
T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, Optuna: A next-generation hyperparameter optimization framework, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
|
[2]
|
D. Bank, N. Koenigstein and R. Giryes, Autoencoders, 2021.,
|
[3]
|
M. A. Belay, S. S. Blakseth, A. Rasheed and P. S. Rossi, Unsupervised Anomaly detection for IoT-Based Multivariate Time Series: Existing Solutions, Performance Analysis and Future Directions, Sensors, 2023.
|
[4]
|
J. Berkson, Application of the Logistic Function to Bio-Assay, Journal of the American Statistical Association, 39 (1944), 357-365.
|
[5]
|
B. E. Boser, I. M. Guyon and V. N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT '92, Association for Computing Machinery, New York, NY, USA (1992), 144-152.
|
[6]
|
M. M. Bronstein, J. Bruna, T. Cohen and P. Veličković, Geometric deep learning: Grids, Groups, Graphs, Geodesics, and Gauges, 2021.
|
[7]
|
J. Cadima and I. T. Jolliffe, Principal component analysis: A review and recent developments, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2016), 20150202.
doi: 10.1098/rsta.2015.0202.
|
[8]
|
J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua and A. Lopez, A comprehensive survey on support vector machine classification: Applications, challenges and trends, Neurocomputing, 408 (2020), 189-215.
|
[9]
|
C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1023/A:1022627411411.
|
[10]
|
H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar and P. A. Muller, Deep learning for time series classification: A review, Data Mining and Knowledge Discovery, 33 (2019), 917-963.
doi: 10.1007/s10618-019-00619-1.
|
[11]
|
F. E. Harrell, Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis, vol. 608, Springer, 2001.
|
[12]
|
C. F. Higham and D. J. Higham, Deep learning: An introduction for applied mathematicians, SIAM Review, 61 (2019), 860-891.
doi: 10.1137/18M1165748.
|
[13]
|
H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24 (), 417-441.
|
[14]
|
D. W. H. Jr, S. Lemeshow and R. X. Sturdivant, Applied Logistic Regression, vol. 398, John Wiley & Sons, 2013.
|
[15]
|
H. Kim, Artificial Intelligence for 6G, Springer International Publishing, Cham, 2022.
|
[16]
|
D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, in International Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.
|
[17]
|
Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444.
|
[18]
|
D. Lee, S. Malacarne and E. Aune, Vector quantized time series generation with a bidirectional prior model, in Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, (eds. F. Ruiz, J. Dy and J.-W. van de Meent), vol. 206 of Proceedings of Machine Learning Research, PMLR, (2023), 7665-7693.
|
[19]
|
R. J. Lewis, An Introduction to Classification and Regression Tree (CART) Analysis, in Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California, vol. 14, 2000.
|
[20]
|
F. T. Liu, K. M. Ting and Z.-H. Zhou, Isolation forest, in 2008 Eighth IEEE International Conference on Data Mining, (2008), 413-422.
|
[21]
|
S. Menard, Logistic Regression: From Introductory to Advanced Concepts and Applications, Sage, 2010.
|
[22]
|
F. Mola and R. Siciliano, A fast splitting procedure for classification trees, Statistics and Computing, 7 (1997), 209-216.
|
[23]
|
J. N. Morgan and J. A. Sonquist, Problems in the Analysis of Survey Data, and a Proposal, Journal of the American Statistical Association, 58 (1963), 415-434.
|
[24]
|
Orcina Ltd, Orcaflex, 2023, https://www.orcina.com/orcaflex/.
|
[25]
|
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library, in Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., 2019.
|
[26]
|
K. Pearson, On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2 (1901), 559-572.
|
[27]
|
V. Podgorelec, P. Kokol, B. Stiglic and I. Rozman, Decision trees: An overview and their use in medicine, Journal of Medical Systems, 26 (2002), 445-463.
|
[28]
|
J. R. Quinlan, Induction of decision trees, Machine Learning, 1 (1986), 81-106.
|
[29]
|
L. E. Raileanu and K. Stoffel, Theoretical Comparison between the Gini Index and Information Gain Criteria, Annals of Mathematics and Artificial Intelligence, 41 (2004), 77-93.
doi: 10.1023/B:AMAI.0000018580.96245.c6.
|
[30]
|
L. Rokach and O. Maimon, Top-Down Induction of Decision Trees Classifiers-A Survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35 (2005), 476-487.
|
[31]
|
B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor and J. Platt, Support vector method for novelty detection, in Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS'99, MIT Press, Cambridge, MA, USA, (1999), 582-588.
|
[32]
|
C. Sensors, TILT - 57A DYNAMIC INCLINOMETER, Three-Axis Accelerometer, Three-Axis Gyroscope, 2024, https://ctisensors.com/products/tilt-5x-dynamic-inclinometer/.
|
[33]
|
R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications, Springer Cham, 2017.
doi: 10.1007/978-3-319-52452-8.
|
[34]
|
Y. Y. Song and L. Ying, Decision tree methods: applications for classification and prediction, Shanghai Archives of Psychiatry, 27 (2015), 130.
|
[35]
|
S. Tangirala, Evaluating the Impact of GINI Index and Information Gain on Classification using Decision Tree Classifier Algorithm, International Journal of Advanced Computer Science and Applications, 11 (2020), 612-619.
|
[36]
|
A. Venkatasubramaniam, J. Wolfson, N. Mitchell, T. Barnes, M. Jaka and S. French, Decision trees in epidemiological research, Emerging Themes in Epidemiology, 14 (2017), 1-12.
|
[37]
|
D. N. Veritas, Recommended Practice, Technical Report DNV-RP-E104, 2019.
|