\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Surprising occurrences of order structures in mathematics

Dedicated to Hans Munthe-Kaas and Brynjulf Owren on their 60th birthdays

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Order and symmetry are main structural principles in mathematics. We give five examples where on the face of it order is not apparent, but deeper investigations reveal that they are governed by order structures. These examples are finite topologies, associative algebras, subgroups of matrix groups, ideals in polynomial rings, and classes of bipartite graphs.

    Mathematics Subject Classification: Primary: 06-02; Secondary: 06A06, 13F55, 13F20, 16G10, 20G07, 54A99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Alexandroff, Diskrete Räume, Rec. Math. [Mat. Sbornik], NS 2 (1937), 3.
    [2] I. AssemD. Simson and  A. SkowronskiElements of Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, Cambridge University Press, 2006. 
    [3] M. AuslanderI. Reiten and  S. O SmaløRepresentation Theory of Artin Algebras, no.36, Cambridge University Press, 1997. 
    [4] G. Birkhoff, Lattice Theory, vol.25, American Mathematical Society, 1940. doi: 10.1090/coll/025.
    [5] A. Björner and G. Kalai, An extended Euler-Poincaré theorem, Acta Mathematica, 161, (1988), 279–303. doi: 10.1007/BF02392300.
    [6] Z. I. Borevich, A description of the subgroups of the complete linear group that contain the group of diagonal matrices, Journal of Soviet Mathematics, 17 (1981), 1718-1730.  doi: 10.1007/BF01091757.
    [7] A. D'Alì, G. Fløystad and A. Nematbakhsh, Resolutions of co-letterplace ideals and generalizations of Bier spheres, Transactions of the American Mathematical Society, 371 (2019), 8733–8753.
    [8] B. A. Davey and  H. A. PriestleyIntroduction to Lattices and Order, Cambridge University Press, 2002. 
    [9] S. Eilenberg and S. MacLane, General theory of natural equivalences, Transactions of the American Mathematical Society, 58 (1945), 231–294. doi: 10.1090/S0002-9947-1945-0013131-6.
    [10] D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, vol. 150, Springer Science & Business Media, 2013.
    [11] V. EneJ. Herzog and F. Mohammadi, Monomial ideals and toric rings of Hibi type arising from a finite poset, European Journal of Combinatorics, 32 (2011), 404-421.  doi: 10.1016/j.ejc.2010.11.006.
    [12] G. Fløystad, Poset ideals of P-partitions and generalized letterplace and determinantal ideals, Acta Mathematica Vietnamica, 44 (2019), 213–241. doi: 10.1007/s40306-018-0262-3.
    [13] G. Fløystad, Shift modules, strongly stable ideals, and their dualities, Trans. Amer. Math. Soc. Ser. B, 10 (2023), 670-714.  doi: 10.1090/btran/137.
    [14] G. Fløystad, B. M. Greve and J. Herzog, Letterplace and co-letterplace ideals of posets, Journal of Pure and Applied Algebra, 221 (2017), 1218–1241. doi: 10.1016/j.jpaa.2016.09.007.
    [15] G. Fløystad and M. Roggero, Borel degenerations of arithmetically Cohen– Macaulay curves in ${\mathbb P}^3$, International Journal of Algebra and Computation, 24 (2014), 715-739.  doi: 10.1142/S0218196714500301.
    [16] B. Fong and  D. I. SpivakAn Invitation to Applied Category Theory: Seven Sketches in Compositionality, Cambridge University Press, 2019. 
    [17] C. A. FranciscoJ. Mermin and J. Schweig, Generalizing the Borel property, Journal of the London Mathematical Society, 87 (2013), 724-740.  doi: 10.1112/jlms/jds071.
    [18] A. Galligo, A propos du théoreme de préparation de Weierstrass, Fonctions de plusieurs variables complexes, Springer, (1974),543–579.
    [19] R. D. Helmstutler and R. S. Higginbottom, Finite topological spaces as a pedagogical tool, PRIMUS, 22 (2012), 64-74.  doi: 10.1080/10511970.2010.492493.
    [20] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, Journal of Algebraic Combinatorics, 22 (2005), 289-302.  doi: 10.1007/s10801-005-4528-1.
    [21] J. Herzog and T. Hibi, Monomial Ideals, vol. 260, Springer, 2011. doi: 10.1007/978-0-85729-106-6.
    [22] J. E. Humphreys, Linear Algebraic Groups, vol. 21, Springer Science & Business Media, 2012.
    [23] P. T. Johnstone, Stone Spaces, vol. 3, Cambridge University Press, 1982.
    [24] M. Kreuzer and L. Robbiano, Computational Commutative Algebra, vol. 1, Springer, 2000. doi: 10.1007/978-3-540-70628-1.
    [25] T.-Y. Lam, Lectures on Modules and Rings, vol. 189, Springer Science & Business Media, 2012.
    [26] P. Lella, An efficient implementation of the algorithm computing the Borel-fixed points of a Hilbert scheme, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, (2012), 242–248.
    [27] J.-L. Loday and B. Vallette, Algebraic Operads, vol. 346, Springer, 2012. doi: 10.1007/978-3-642-30362-3.
    [28] J. P. May, Finite Spaces and Larger Contexts, Draft, book sumbitted to AMS 2016.
    [29] M. C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J., 33 (1966), 465-474. 
    [30] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, vol. 227, Springer Science & Business Media, 2005.
    [31] S. Morey and R. H. Villarreal, Edge ideals: Algebraic and combinatorial properties, Progress in Commutative Algebra, 1 (2012), 85-126. 
    [32] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 6 (1958), 83-142. 
    [33] R. Ramkumar, Hilbert schemes with two Borel-fixed points, Journal of Algebra, 617 (2023), 17-47.  doi: 10.1016/j.jalgebra.2022.11.003.
    [34] A. Reeves and M. Stillman, Smoothness of the lexicographic point, Journal of Algebraic Geometry, 6 (1997), 235-246. 
    [35] A. Skowroński and K. Yamagata, Frobenius Algebras, vol. 12, European Mathematical Society, 2011.
    [36] A. K. Steiner, The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc., 122 (1966), 379-398.  doi: 10.1090/S0002-9947-1966-0190893-2.
    [37] R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Mathematica, 66 (1990), 277-293.  doi: 10.1007/BF02568497.
  • 加载中
SHARE

Article Metrics

HTML views(957) PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return