The Koopman operator has become an essential tool for data-driven analysis, prediction, and control of complex systems. The main reason is the enormous potential of identifying linear function space representations of nonlinear dynamics from measurements. This equally applies to ordinary, stochastic, and partial differential equations (PDEs). Until now, with a few exceptions only, the PDE case is mostly treated rather superficially, and the specific structure of the underlying dynamics is largely ignored. In this paper, we show that symmetries in the system dynamics can be carried over to the Koopman operator, which allows us to significantly increase the model efficacy. Moreover, the situation where we only have access to partial observations—i.e., measurements, as is very common for experimental data—has not been treated to its full extent, either. Moreover, we address the highly-relevant case where we cannot measure the full state, where alternative approaches (e.g., delay coordinates) have to be considered. We derive rigorous statements on the required number of observables in this situation, based on embedding theory. We present numerical evidence using various numerical examples including the wave equation and the Kuramoto-Sivashinsky equation.
Citation: |
Figure 1. The extended Koopman operator concept for partially observed or unknown states. Instead of directly learning the Koopman operator for the observable $ f: \mathcal{Y} \rightarrow \mathbb{R}^q $, we introduce the core dynamical system $ \varphi^\tau $ as an intermediate model that—given a sufficiently large embedding dimension $ q $—has a one-to-one correspondence to $ \Phi^\tau $ on the attractor. The Koopman operator is then defined in the standard ODE setting using a new observable function $ h\in \mathcal{H} $, $ h: \mathbb{R}^q \rightarrow \mathbb{R}^q $. For simplicity, we choose $ h = \operatorname{id} $ here
Figure 2. Schematic of the local Koopman approach. We consider a local Koopman matrix $ \hat{K}^\tau \in \mathbb{R}^{q \times q} $. (a) The same approximation $ \hat{K}^\tau $ can be applied anywhere in the domain such that we obtain a global matrix $ \tilde{K}^\tau $ with identical blocks $ \hat{K}^\tau $. (b) The shaded $ B $ terms represent coupling terms to neighboring local models if we pursue a DMDc-like approach
Figure 7. Local DMDc-approximation according to Fig. 2 (b), with $ q = 1 $ and an additional control input from left and right, respectively
Figure 13. Local DMDc-approximation according to Fig. 2 (b), with $ q_d = 50 $, $ q_w = 1 $, and an additional control input from left and right (all $ q_d = 50 $ delays), respectively
[1] |
H. Arbabi and I. Mezić, Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator, SIAM Journal on Applied Dynamical Systems, 16 (2017), 2096-2126.
doi: 10.1137/17M1125236.![]() ![]() ![]() |
[2] |
K. Atz, F. Grisoni and G. Schneider, Geometric deep learning on molecular representations, Nature Machine Intelligence, 3 (2021), 1023-1032.
doi: 10.1038/s42256-021-00418-8.![]() ![]() |
[3] |
A. M. Avila and I. Mezić, Data-driven analysis and forecasting of highway traffic dynamics, Nature Communications, 11 (2020), 2090.
![]() |
[4] |
P. Bevanda, M. Beier, A. Lederer, S. Sosnowski, E. Hüllermeier and S. Hirche, Koopman kernel regression, Advances in Neural Information Processing Systems, 36 (2023), 16207-16221.
![]() |
[5] |
A. Bittracher, P. Koltai, S. Klus, R. Banisch, M. Dellnitz and C. Schütte, Transition manifolds of complex metastable systems: Theory and data-driven computation of effective dynamics, Journal of Nonlinear Science, 28 (2017), 471-512.
doi: 10.1007/s00332-017-9415-0.![]() ![]() |
[6] |
L. Bold, L. Grüne, M. Schaller and K. Worthmann, Data-driven MPC with stability guarantees using extended dynamic mode decomposition, IEEE Transactions on Automatic Control, (2024).
doi: 10.1109/TAC.2024.3431169.![]() ![]() |
[7] |
L. Boninsegna, F. Nüske and C. Clementi, Sparse learning of stochastic dynamical equations, Journal of Chemical Physics, 148 (2018).
doi: 10.1063/1.5018409.![]() ![]() |
[8] |
M. M. Bronstein, J. Bruna, T. Cohen and P. Veličković, Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, arXiv: 2104.13478, (2021).
![]() |
[9] |
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P. Vandergheynst, Geometric deep learning: Going beyond Euclidean data, IEEE Signal Processing Magazine, 34 (2017), 18-42.
doi: 10.1109/MSP.2017.2693418.![]() ![]() |
[10] |
S. L. Brunton, M. Budišić, E. Kaiser and J. N. Kutz, Modern Koopman theory for dynamical systems, SIAM Review, 64 (2022), 229-340.
doi: 10.1137/21M1401243.![]() ![]() |
[11] |
S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser and J. N. Kutz, Chaos as an intermittently forced linear system, Nature Communications, 8 (2017).
doi: 10.1038/s41467-017-00030-8.![]() ![]() |
[12] |
S. L. Brunton, J. L. Proctor and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, 113 (2016), 3932-3937.
doi: 10.1073/pnas.1517384113.![]() ![]() ![]() |
[13] |
M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism, Chaos, 22 (2012).
doi: 10.1063/1.4772195.![]() ![]() |
[14] |
A. J. Chorin, O. H. Hald and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proceedings of the National Academy of Sciences, 97 (2000), 2968-2973.
doi: 10.1073/pnas.97.7.2968.![]() ![]() ![]() |
[15] |
V. Cibulka, M. Korda and T. Haniš, Dictionary-free Koopman model predictive control with nonlinear input transformation, (2022), arXiv: 2212.13828.
![]() |
[16] |
T. S. Cohen and M. Welling, Group equivariant convolutional networks, International Conference on Machine Learning, 33 (2016), 2990-2999.
![]() |
[17] |
C. R. Constante-Amores, A. J. Linot, and M. D. Graham., Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches, Chaos, 34 (2024), Paper No. 043119, 18 pp.
doi: 10.1063/5.0180415.![]() ![]() |
[18] |
M. Dellnitz, M. Hessel-von Molo and A. Ziessler, On the computation of attractors for delay differential equations, Journal of Computational Dynamics, 3 (2016), 93-112.
doi: 10.3934/jcd.2016005.![]() ![]() ![]() |
[19] |
H. Harder, S. Peitz, F. Nüske, F. Philipp, M. Schaller and K. Worthmann, Group convolutional extended dynamic mode decomposition, (2024), arXiv: 2411.00905.
![]() |
[20] |
H. Harder, J. Rabault, R. Vinuesa, M. Mortensen and S. Peitz, Solving partial differential equations with equivariant extreme learning machines, Symposium on Systems Theory in Data and Optimization (SysDO), arXiv: 2404.18530, (2024).
![]() |
[21] |
J. M. Hyman, B. Nicolaenko and S. Zaleski, Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces, Physica D: Nonlinear Phenomena, 23 (1986), 265-292.
doi: 10.1016/0167-2789(86)90136-3.![]() ![]() ![]() |
[22] |
M. Kamb, E. Kaiser, S. L. Brunton and J. N. Kutz, Time-delay observables for Koopman: Theory and applications, SIAM Journal on Applied Dynamical Systems, 19 (2020), 886-917.
doi: 10.1137/18M1216572.![]() ![]() |
[23] |
S. Klus, P. Koltai and C. Schütte, On the numerical approximation of the Perron-Frobenius and Koopman operator, Journal of Computational Dynamics, 3 (2016), 51-79.
doi: 10.3934/jcd.2016003.![]() ![]() ![]() |
[24] |
S. Klus, F. Nüske, S. Peitz, J.-H. Niemann, C. Clementi and C. Schütte, Data-driven approximation of the Koopman generator: Model reduction, system identification, and control, Physica D: Nonlinear Phenomena, 406 (2020), 132416.
doi: 10.1016/j.physd.2020.132416.![]() ![]() ![]() |
[25] |
F. Köhne, F. M. Philipp, M. Schaller, A. Schiela and K. Worthmann, ${L}^\infty$-error bounds for approximations of the Koopman operator by kernel extended dynamic mode decomposition, SIAM Journal of Applied Dynamical Systems, (2024), arXiv: 2403.18809.
![]() |
[26] |
M. Korda and I. Mezić, On convergence of extended dynamic mode decomposition to the Koopman operator, Journal of Nonlinear Science, 28 (2018), 687-710.
doi: 10.1007/s00332-017-9423-0.![]() ![]() ![]() |
[27] |
M. Korda and I. Mezić, Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, Automatica, 93 (2018), 149-160.
doi: 10.1016/j.automatica.2018.03.046.![]() ![]() ![]() |
[28] |
B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proceedings of the National Academy of Sciences, 17 (1931), 315-318.
doi: 10.1073/pnas.17.5.315.![]() ![]() |
[29] |
J. N. Kutz, J. L. Proctor and S. L. Brunton, Koopman Theory for Partial Differential Equations, 2016.
![]() |
[30] |
J. Masci, D. Boscaini, M. M. Bronstein and P. Vandergheynst, Geodesic convolutional neural networks on Riemannian manifolds, IEEE International Conference on Computer Vision Workshops, (2015), 37-45.
doi: 10.1109/ICCVW.2015.112.![]() ![]() |
[31] |
A. Mauroy, Koopman operator framework for spectral analysis and identification of infinite-dimensional systems, Mathematics, 9 (2021).
doi: 10.3390/math9192495.![]() ![]() |
[32] |
I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator, Annual Review of Fluid Mechanics, 45 (2013), 357-378.
doi: 10.1146/annurev-fluid-011212-140652.![]() ![]() |
[33] |
I. Mezić, On numerical approximations of the Koopman operator, Mathematics, 10 (2022), 1180.
doi: 10.3390/math10071180.![]() ![]() |
[34] |
M. Mortensen, Shenfun: High performance spectral Galerkin computing platform, Journal of Open Source Software, 3 (2018), 1071.
doi: 10.21105/joss.01071.![]() ![]() |
[35] |
H. Nakao and I. Mezić, Spectral analysis of the Koopman operator for partial differential equations, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020), 113131.
doi: 10.1063/5.0011470.![]() ![]() ![]() |
[36] |
J.-H. Niemann, S. Klus and C. Schütte, Data-driven model reduction of agent-based systems using the Koopman generator, PLOS ONE, 16 (2021), e0250970.
doi: 10.1371/journal.pone.0250970.![]() ![]() |
[37] |
F. Nüske, S. Peitz, F. Philipp, M. Schaller and K. Worthmann, Finite-data error bounds for Koopman-based prediction and control, Journal of Nonlinear Science, 33 (2023), Paper No. 14, 34 pp.
doi: 10.1007/s00332-022-09862-1.![]() ![]() ![]() |
[38] |
F. Nüske, P. Koltai, L. Boninsegna and C. Clementi, Spectral properties of effective dynamics from conditional expectations, Entropy, 23 (2021), Paper No. 134, 25 pp.
doi: 10.3390/e23020134.![]() ![]() |
[39] |
S. Ober-Blöbaum and S. Peitz, Explicit multiobjective model predictive control for nonlinear systems with symmetries, International Journal of Robust and Nonlinear Control, 31 (2021), 380-403.
doi: 10.1002/rnc.5281.![]() ![]() ![]() |
[40] |
S. E. Otto, S. Peitz and C. W. Rowley, Learning bilinear models of actuated Koopman generators from partially observed trajectories, SIAM Journal on Applied Dynamical Systems, 23 (2024), 885-923.
doi: 10.1137/22M1523601.![]() ![]() ![]() |
[41] |
S. E. Otto and C. W. Rowley, Linearly recurrent autoencoder networks for learning dynamics, SIAM Journal on Applied Dynamical Systems, 18 (2019), 558-593.
doi: 10.1137/18M1177846.![]() ![]() ![]() |
[42] |
J. Page and R. R. Kerswell, Koopman analysis of Burgers equation, Phys. Rev. Fluids, 3 (2018), 071901.
doi: 10.1103/PhysRevFluids.3.071901.![]() ![]() |
[43] |
J. Pathak, B. Hunt, M. Girvan, Z. Lu and E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Physical Review Letters, 120 (2018), 024102.
doi: 10.1103/PhysRevLett.120.024102.![]() ![]() |
[44] |
S. Peitz and S. Klus, Koopman operator-based model reduction for switched-system control of PDEs, Automatica, 106 (2019), 184-191.
doi: 10.1016/j.automatica.2019.05.016.![]() ![]() ![]() |
[45] |
S. Peitz, J. Stenner, V. Chidananda, O. Wallscheid, S. L. Brunton and K. Taira, Distributed control of partial differential equations using convolutional reinforcement learning, Physica D: Nonlinear Phenomena, 461 (2024), 134096, 8 pp.
doi: 10.1016/j.physd.2024.134096.![]() ![]() ![]() |
[46] |
S. Peitz, S. E. Otto and C. W. Rowley, Data-driven model predictive control using interpolated Koopman generators, SIAM Journal on Applied Dynamical Systems, 19 (2020), 2162-2193.
doi: 10.1137/20M1325678.![]() ![]() ![]() |
[47] |
F. Philipp, M. Schaller, K. Worthmann, S. Peitz and F. Nüske, Error bounds for kernel-based approximations of the Koopman operator, Applied and Computational Harmonic Analysis, 71 (2024), 101657.
doi: 10.1016/j.acha.2024.101657.![]() ![]() ![]() |
[48] |
F. M. Philipp, M. Schaller, S. Boshoff, S. Peitz, F. Nüske and K. Worthmann, Variance representations and convergence rates for data-driven approximations of Koopman operators, (2024), arXiv preprint, arXiv: 2402.02494.
![]() |
[49] |
J. L. Proctor, S. L. Brunton and J. N. Kutz, Dynamic mode decomposition with control, SIAM Journal on Applied Dynamical Systems, 15 (2015), 142-161.
doi: 10.1137/15M1013857.![]() ![]() |
[50] |
M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.![]() ![]() ![]() |
[51] |
J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems, Nonlinearity, 18 (2005), 2135-2143.
doi: 10.1088/0951-7715/18/5/013.![]() ![]() ![]() |
[52] |
C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, 641 (2009), 115-127.
doi: 10.1017/S0022112009992059.![]() ![]() ![]() |
[53] |
A. Salova, J. Emenheiser, A. Rupe, J. P. Crutchfield and R. M. D'Souza, Koopman operator and its approximations for systems with symmetries, Chaos, 29 (2019), 093128, 16 pp.
doi: 10.1063/1.5099091.![]() ![]() ![]() |
[54] |
T. Sauer, J. A. Yorke and M. Casdagli, Embedology, Journal of Statistical Physics, 65 (1991), 579-616.
doi: 10.1007/BF01053745.![]() ![]() ![]() |
[55] |
M. Schaller, K. Worthmann, F. Philipp, S. Peitz and F. Nüske, Towards reliable data-based optimal and predictive control using extended DMD, IFAC-PapersOnLine, 56 (2023), 169-174.
doi: 10.1016/j.ifacol.2023.02.029.![]() ![]() |
[56] |
P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, 656 (2010), 5-28.
doi: 10.1017/S0022112010001217.![]() ![]() ![]() |
[57] |
S. Sinha, S. P. Nandanoori and E. Yeung, Koopman operator methods for global phase space exploration of equivariant dynamical systems, IFAC-PapersOnLine, 53 (2020), 1150-1155.
doi: 10.1016/j.ifacol.2020.12.1322.![]() ![]() |
[58] |
F. Takens, Detecting strange attractors in turbulence, Lecture Notes in Mathematics, Springer Berlin Heidelberg, (1981), 366-381.
doi: 10.1007/BFb0091924.![]() ![]() ![]() |
[59] |
E. Van Der Pol, D. E. Worrall, H. Van Hoof, F. A. Oliehoek and M. Welling, MDP homomorphic networks: Group symmetries in reinforcement learning, Advances in Neural Information Processing Systems, 33 (2020), 4199-4210.
![]() |
[60] |
P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis and P. Koumoutsakos, Data-driven forecasting of high-dimensional chaotic systems with long short-Term memory networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474 (2018), 20170844, 20 pp.
doi: 10.1098/rspa.2017.0844.![]() ![]() ![]() |
[61] |
C. Vignon, J. Rabault, J. Vasanth, F. Alcántara-Ávila, M. Mortensen and R. Vinuesa, Effective control of two-dimensional Rayleigh-Bénard convection: Invariant multi-agent reinforcement learning is all you need, Physics of Fluids, 35 (2023).
doi: 10.1063/5.0153181.![]() ![]() |
[62] |
M. Weissenbacher, S. Abbott, A. Garg and Y. Kawahara, Koopman Q-learning: Offline reinforcement learning via symmetries of dynamics, 39th International Conference on Machine Learning, (2022), 23645-23667.
![]() |
[63] |
H. Whitney, Differentiable manifolds, The Annals of Mathematics, 37 (1936), 645-680.
doi: 10.2307/1968482.![]() ![]() ![]() |
[64] |
M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition, Journal of Nonlinear Science, 25 (2015), 1307-1346.
doi: 10.1007/s00332-015-9258-5.![]() ![]() ![]() |
[65] |
M. O. Williams, C. W. Rowley and I. G. Kevrekidis, A kernel-based method for data-driven Koopman spectral analysis, Journal of Computational Dynamics, 2 (2015), 247-265.
doi: 10.3934/jcd.2015005.![]() ![]() ![]() |
[66] |
C. Zhang and E. Zuazua, A quantitative analysis of Koopman operator methods for system identification and predictions, Comptes Rendus. Mécanique, 351 (2023), 1-31.
doi: 10.5802/crmeca.138.![]() ![]() |
[67] |
W. Zhang, C. Hartmann and C. Schütte, Effective dynamics along given reaction coordinates, and reaction rate theory, Faraday Discussions, 195 (2016), 365-394.
doi: 10.1039/C6FD00147E.![]() ![]() |
[68] |
A. Ziessler, M. Dellnitz and R. Gerlach, The numerical computation of unstable manifolds for infinite dimensional dynamical systems by embedding techniques, SIAM Journal on Applied Dynamical Systems, 18 (2019), 1265-1292.
doi: 10.1137/18M1204395.![]() ![]() ![]() |
The extended Koopman operator concept for partially observed or unknown states. Instead of directly learning the Koopman operator for the observable
Schematic of the local Koopman approach. We consider a local Koopman matrix
PDE solution vs. global Koopman-approximation for
Eigenvalues of
Predictions using
One-step prediction error for varying window widths
Local DMDc-approximation according to Fig. 2 (b), with
PDE vs. local model with
Numerical PDE solution versus global Koopman-approximation for
Eigenvalues of
Predictions using
One-step prediction error of
Local DMDc-approximation according to Fig. 2 (b), with