January  2014, 1(1): 1-15. doi: 10.3934/jdg.2014.1.1

Bio-inspired paradigms in network engineering games

1. 

INRIA Sophia-Antipolis, 2004 Route des Lucioles, 06906, Sophia-Antipolis, France

Received  April 2012 Revised  June 2012 Published  June 2013

Network Engineering Games (NEGs) is an emerging branch of game theory developed in Electrical Engineering Departments. It concerns games that arise in all levels of telecommunication networks. There has been a growing interest among researchers in this community in bio-inspired methodologies in recent years due to two reasons. First, many problems in networking have much in common with problems in biology. Examples are (i) propagation of information in networks, that has similar dynamics as propagation of epidemics; (ii) energy management issues in wireless networks and competition over resources are often similar to issues by biologists; (iii) both equilibria concepts as well as replicator dynamics that arise in evolutionary games are quite relevant to NEGs. In this paper we present an overview of applications and tools used in network engineering games, we then describe in more depth bio-inspired tools used in or relevant to network engineering. We present finally an example of a stochastic epidemic game arising in wireless networks that involves competition over the relaying of information.
Citation: Eitan Altman. Bio-inspired paradigms in network engineering games. Journal of Dynamics & Games, 2014, 1 (1) : 1-15. doi: 10.3934/jdg.2014.1.1
References:
[1]

T. Alpcan and T. Başar, "Network Security. A Decision and Game-Theoretic Approach," Cambridge University Press, Cambridge, 2011.  Google Scholar

[2]

E. Altman, "Constrained Markov Decision Processes. Stochastic Modeling," Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[3]

E. Altman, R. El Azouzi and V. Abramov, Non-cooperative routing in loss networks, Performance Evaluation, 49 (2002), 257-272. doi: 10.1016/S0166-5316(02)00112-8.  Google Scholar

[4]

E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez and L. Wynter, A survey on networking games in telecommunications, Computers and Operations Research, 33 (2006), 286-311. doi: 10.1016/j.cor.2004.06.005.  Google Scholar

[5]

E. Altman and R. El-Azouzi, La théorie des jeux non-coopératifs appliquée aux réseaux de télécommunication, (in French) Annales des Télécommunications, (2007). Google Scholar

[6]

E. Altman and L. Wynter, Equilibrium, games, and pricing in transportation and telecommunications networks, Networks and Spatial Economics, 4 (2004), 7-21. doi: 10.1023/B:NETS.0000015653.52983.61.  Google Scholar

[7]

Eitan Altman, A stochastic game approach for competition over popularity in social networks, Dynamic Games and Applications, online publication, (2012). Available from: http://hal.inria.fr/hal-00681959. doi: 10.1007/s13235-012-0057-4.  Google Scholar

[8]

Eitan Altman and Yezekael Hayel, Markov decision evolutionary games, IEEE Transactions on Automatic Control, 55 (2010), 1560-1569. doi: 10.1109/TAC.2010.2042230.  Google Scholar

[9]

J. Aspnes, K. Chang and A. Yampolskiy, Inoculation strategies for victims of viruses and the sum-of-squares partition problem, J. Comput. Syst. Sci., 72 (2006), 1077-1093. doi: 10.1016/j.jcss.2006.02.003.  Google Scholar

[10]

J. Aspnes, N. Rustagi and J. Saia, Worm versus alert: Who wins in a battle for control of a large-scale network?, Lecture Notes in Computer Science, 4878 (2007), 443-456. doi: 10.1007/978-3-540-77096-1_32.  Google Scholar

[11]

C. T. Bauch, Imitation dynamics predict vaccinating behavior, Proc. of The Royal Society, (2005). doi: 10.1098/rspb.2005.3153.  Google Scholar

[12]

C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games, Proceedings of the National Academy of Science, 101 (2004), 13391-13394. doi: 10.1073/pnas.0403823101.  Google Scholar

[13]

N. G. Beans, F. P. Kelly and P. G. Taylor, Braess's paradox in a loss network, J. Appl. Prob., 34 (1997), 155-159. doi: 10.2307/3215183.  Google Scholar

[14]

M. Beckmann, C. B. McGuire and C. B. Winsten, "Studies in the Economics of Transportation," Yale Univ. Press, New Haven, 1956. Google Scholar

[15]

T. Berger, The source coding game, IEEE Trans. on Inform. Theory, IT-17 (1971), 71-76.  Google Scholar

[16]

N. M. Blachman, Communication as a game, in "I.R.E. WESCON Convention Record Part 2" (August 1957), 61-66. Google Scholar

[17]

D. Braess, Über ein Paradoxien aus der Verkehrsplanung, (German) Unternehmensforschung, 12 (1968), 258-268.  Google Scholar

[18]

Mung Chiang, Chee Wei Tan, Prashanth Hande and Tian Lan, Power control in wireless cellular networks, Foundations and Trends in Networking, 2 (2007), 381-533. doi: 10.1561/1300000009.  Google Scholar

[19]

S. Coraluppi and S. I. Marcus, Risk-sensitive queueing, in "Proc. 35th Annual Allerton Conf. on Communication, Control, and Computing," Urbana, IL, USA, September 28-October 1, 1997. Google Scholar

[20]

Merouane Debbah and Samson Lasaulce, "Game Theory for Wireless Networks: From Fundamentals to Practice," Elsevier Science & Technology, 2011. Google Scholar

[21]

C. Douligeris, "Optimal Flow Control and Fairness in Communication Networks: A Game Theoretic Perspective," Ph.D. Dissertation, Electrical Engineering, Columbia University, 1989. Google Scholar

[22]

T. Ericson, The noncooperative binary adder channel, IEEE Trans. on Inform. Theory, 32 (1986), 365-374. doi: 10.1109/TIT.1986.1057190.  Google Scholar

[23]

D. Falomari, N. Mandayam and D. Goodman, A new framework for power control in wireless data networks: Games utility and pricing, in "Proc. Allerton Conference on Communication, Control and Computing," Champaign, Illinois, USA, (1998), 546-555. Google Scholar

[24]

C. Frenzel, H. Sanneck and S. Hamalainen, "LTE Self-Organising Networks (Son): Network Management Automation for Operational Efficiency," John Wiley & Sons, 2011. Google Scholar

[25]

A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and Wardrop equilibria, Networks, 15 (1985), 295-308. doi: 10.1002/net.3230150303.  Google Scholar

[26]

M. T. Hsiao and A. A. Lazar, A game theoretic approach to decentralized flow control of Markovian queueing networks, in "Performance '87" (Brussels, 1987), North-Holland, Amsterdam, (1988), 55-73.  Google Scholar

[27]

M. T. Hsiao and A. A. Lazar, Optimal decentralized flow control of Markovian queueing networks with multiple controllers, Performance Evaluation, 13 (1991), 181-204. doi: 10.1016/0166-5316(91)90054-7.  Google Scholar

[28]

M. H. R. Khouzani, Saswati Sarkar and Eitan Altman, Saddle-point strategies in malware attack, IEEE Journal on Selected Areas in Communications, 30 (2012), 31-43. doi: 10.1109/JSAC.2012.120104.  Google Scholar

[29]

Man-Tung Tony Hsiao, "Optimal Decentralized Flow Control in Computer Communication Networks," Ph.D. Thesis, EE, Columbia Univ, October, 1986. Google Scholar

[30]

Anna Jaśkiewicz, A note on negative dynamic programming for risk-sensitive control, Operations Research Letters, 36 (2008), 531-534. doi: 10.1016/j.orl.2008.03.003.  Google Scholar

[31]

Hongbin Ji and Ching-Yao Huang, Non-cooperative uplink power control in cellular radio systems, Wireless Networks, 4 (1998), 233-240. Google Scholar

[32]

B. Jovanovic and R. W. Rosenthal, Anonymous sequential games, Journal of Mathematical Economics, 17 (1988), 77-87. doi: 10.1016/0304-4068(88)90029-8.  Google Scholar

[33]

S. Lasaulce and H. Tembine, "Game Theory and Learning for Wireless Networks," Fundamentals and Applications, Academic Press, 2011. Google Scholar

[34]

S. A. Lippman, Applying a new device in the optimization of exponential queueing systems, Operations Research, 23 (1975), 687-710. doi: 10.1287/opre.23.4.687.  Google Scholar

[35]

Allen Mackenzie and Luiz DaSilva, "Game Theory for Wireless Engineers," Synthesis Lectures on Communications, Morgan & Claypool Publishers, 2006. doi: 10.2200/S00014ED1V01Y200508COM001.  Google Scholar

[36]

R. Mazumdar, L. G. Mason and C. Douligeris, Fairness in network optimal flow control: Optimality of product forms, IEEE Trans. on Comm., 39 (1991), 775-782. doi: 10.1109/26.87140.  Google Scholar

[37]

I. Menache and A. Ozdaglar, "Network Games: Theory, Models, and Dynamics," Synthesis Lectures on Communication Networks, Morgan & Claypool Publishers, 2011. doi: 10.2200/S00330ED1V01Y201101CNT009.  Google Scholar

[38]

I. Milchtaich, Congestion games with player-specific payoff functions, Games and Economic Behavior, 13 (1996), 111-124. doi: 10.1006/game.1996.0027.  Google Scholar

[39]

W. Murrey, The application of epidemiology to computer viruses, Comp. Security, 7 (1988), 139-150. Google Scholar

[40]

Noam Nisan, Tim Roughgarden, Éva Tardos and Vijay V. Vazirani, eds., "Algorithmic Game Theory," Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511800481.  Google Scholar

[41]

A. Orda, R. Rom and N. Shimkin, Competitive routing in multi-user communication networks, in "INFOCOM '93. Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking: Foundation for the Future" (San Francisco, CA), IEEE, (1993), 964-971. doi: 10.1109/INFCOM.1993.253270.  Google Scholar

[42]

M. Patriksson, "The Traffic Assignment Problem: Models and Methods," VSP BV, P.O. Box 346, 3700 AH Zeist, The Netherlands, 1994. Google Scholar

[43]

R. W. Rosenthal, A class of games possessing pure strategy Nash equilibria, Int. J. Game Theory, 2 (1973), 65-67. doi: 10.1007/BF01737559.  Google Scholar

[44]

R. W. Rosenthal, The network equilibrium problem in integers, Networks, 3 (1973), 53-59. doi: 10.1002/net.3230030104.  Google Scholar

[45]

William H. Sandholm, "Population Games and Evolutionary Dynamics," Economic Learning and Social Evolution, MIT Press, Cambridge, MA, 2010.  Google Scholar

[46]

J. Maynard Smith, Game theory and the evolution of fighting, in "On Evolution" (J. Maynard Smith), Edinburgh University Press, Edinburgh, (1972), 8-28. Google Scholar

[47]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Evolutionary games in wireless networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40 (2010), 634-646. doi: 10.1109/TSMCB.2009.2034631.  Google Scholar

[48]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Bio-inspired delayed evolutionary game dynamics with networking applications, Telecommunication Systems, 47 (2011), 137-152. doi: 10.1007/s11235-010-9307-1.  Google Scholar

[49]

D. C. Trimble, "A Game-Theoretic Approach to Signal and Receiver Design," Ph.D. Thesis, Nov. 1972. doi: 10.1109/TIT.1972.1054913.  Google Scholar

[50]

T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge Univ Press, 2005. Google Scholar

[51]

J. G. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc. Inst. Civ. Eng., Part 2, 1 (1952), 325-378. Google Scholar

[52]

Y. Zhang and M. Guizani, "Game Theory for Wireless Commun. and Networking," CRC, 2011. Google Scholar

[53]

Yan Zhang and Mohsen Guizani, "Game Theory for Wireless Communications and Networking," Taylor and Francis, 2010. Google Scholar

[54]

I. Ziedins, A paradox in a queueing network with state-dependent routing and loss, Journal of Applied Mathematics and Decision Sciences, 2007 (2007), Article ID 68280, 10 pp. doi: 10.1155/2007/68280.  Google Scholar

show all references

References:
[1]

T. Alpcan and T. Başar, "Network Security. A Decision and Game-Theoretic Approach," Cambridge University Press, Cambridge, 2011.  Google Scholar

[2]

E. Altman, "Constrained Markov Decision Processes. Stochastic Modeling," Chapman & Hall/CRC, Boca Raton, FL, 1999.  Google Scholar

[3]

E. Altman, R. El Azouzi and V. Abramov, Non-cooperative routing in loss networks, Performance Evaluation, 49 (2002), 257-272. doi: 10.1016/S0166-5316(02)00112-8.  Google Scholar

[4]

E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez and L. Wynter, A survey on networking games in telecommunications, Computers and Operations Research, 33 (2006), 286-311. doi: 10.1016/j.cor.2004.06.005.  Google Scholar

[5]

E. Altman and R. El-Azouzi, La théorie des jeux non-coopératifs appliquée aux réseaux de télécommunication, (in French) Annales des Télécommunications, (2007). Google Scholar

[6]

E. Altman and L. Wynter, Equilibrium, games, and pricing in transportation and telecommunications networks, Networks and Spatial Economics, 4 (2004), 7-21. doi: 10.1023/B:NETS.0000015653.52983.61.  Google Scholar

[7]

Eitan Altman, A stochastic game approach for competition over popularity in social networks, Dynamic Games and Applications, online publication, (2012). Available from: http://hal.inria.fr/hal-00681959. doi: 10.1007/s13235-012-0057-4.  Google Scholar

[8]

Eitan Altman and Yezekael Hayel, Markov decision evolutionary games, IEEE Transactions on Automatic Control, 55 (2010), 1560-1569. doi: 10.1109/TAC.2010.2042230.  Google Scholar

[9]

J. Aspnes, K. Chang and A. Yampolskiy, Inoculation strategies for victims of viruses and the sum-of-squares partition problem, J. Comput. Syst. Sci., 72 (2006), 1077-1093. doi: 10.1016/j.jcss.2006.02.003.  Google Scholar

[10]

J. Aspnes, N. Rustagi and J. Saia, Worm versus alert: Who wins in a battle for control of a large-scale network?, Lecture Notes in Computer Science, 4878 (2007), 443-456. doi: 10.1007/978-3-540-77096-1_32.  Google Scholar

[11]

C. T. Bauch, Imitation dynamics predict vaccinating behavior, Proc. of The Royal Society, (2005). doi: 10.1098/rspb.2005.3153.  Google Scholar

[12]

C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games, Proceedings of the National Academy of Science, 101 (2004), 13391-13394. doi: 10.1073/pnas.0403823101.  Google Scholar

[13]

N. G. Beans, F. P. Kelly and P. G. Taylor, Braess's paradox in a loss network, J. Appl. Prob., 34 (1997), 155-159. doi: 10.2307/3215183.  Google Scholar

[14]

M. Beckmann, C. B. McGuire and C. B. Winsten, "Studies in the Economics of Transportation," Yale Univ. Press, New Haven, 1956. Google Scholar

[15]

T. Berger, The source coding game, IEEE Trans. on Inform. Theory, IT-17 (1971), 71-76.  Google Scholar

[16]

N. M. Blachman, Communication as a game, in "I.R.E. WESCON Convention Record Part 2" (August 1957), 61-66. Google Scholar

[17]

D. Braess, Über ein Paradoxien aus der Verkehrsplanung, (German) Unternehmensforschung, 12 (1968), 258-268.  Google Scholar

[18]

Mung Chiang, Chee Wei Tan, Prashanth Hande and Tian Lan, Power control in wireless cellular networks, Foundations and Trends in Networking, 2 (2007), 381-533. doi: 10.1561/1300000009.  Google Scholar

[19]

S. Coraluppi and S. I. Marcus, Risk-sensitive queueing, in "Proc. 35th Annual Allerton Conf. on Communication, Control, and Computing," Urbana, IL, USA, September 28-October 1, 1997. Google Scholar

[20]

Merouane Debbah and Samson Lasaulce, "Game Theory for Wireless Networks: From Fundamentals to Practice," Elsevier Science & Technology, 2011. Google Scholar

[21]

C. Douligeris, "Optimal Flow Control and Fairness in Communication Networks: A Game Theoretic Perspective," Ph.D. Dissertation, Electrical Engineering, Columbia University, 1989. Google Scholar

[22]

T. Ericson, The noncooperative binary adder channel, IEEE Trans. on Inform. Theory, 32 (1986), 365-374. doi: 10.1109/TIT.1986.1057190.  Google Scholar

[23]

D. Falomari, N. Mandayam and D. Goodman, A new framework for power control in wireless data networks: Games utility and pricing, in "Proc. Allerton Conference on Communication, Control and Computing," Champaign, Illinois, USA, (1998), 546-555. Google Scholar

[24]

C. Frenzel, H. Sanneck and S. Hamalainen, "LTE Self-Organising Networks (Son): Network Management Automation for Operational Efficiency," John Wiley & Sons, 2011. Google Scholar

[25]

A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and Wardrop equilibria, Networks, 15 (1985), 295-308. doi: 10.1002/net.3230150303.  Google Scholar

[26]

M. T. Hsiao and A. A. Lazar, A game theoretic approach to decentralized flow control of Markovian queueing networks, in "Performance '87" (Brussels, 1987), North-Holland, Amsterdam, (1988), 55-73.  Google Scholar

[27]

M. T. Hsiao and A. A. Lazar, Optimal decentralized flow control of Markovian queueing networks with multiple controllers, Performance Evaluation, 13 (1991), 181-204. doi: 10.1016/0166-5316(91)90054-7.  Google Scholar

[28]

M. H. R. Khouzani, Saswati Sarkar and Eitan Altman, Saddle-point strategies in malware attack, IEEE Journal on Selected Areas in Communications, 30 (2012), 31-43. doi: 10.1109/JSAC.2012.120104.  Google Scholar

[29]

Man-Tung Tony Hsiao, "Optimal Decentralized Flow Control in Computer Communication Networks," Ph.D. Thesis, EE, Columbia Univ, October, 1986. Google Scholar

[30]

Anna Jaśkiewicz, A note on negative dynamic programming for risk-sensitive control, Operations Research Letters, 36 (2008), 531-534. doi: 10.1016/j.orl.2008.03.003.  Google Scholar

[31]

Hongbin Ji and Ching-Yao Huang, Non-cooperative uplink power control in cellular radio systems, Wireless Networks, 4 (1998), 233-240. Google Scholar

[32]

B. Jovanovic and R. W. Rosenthal, Anonymous sequential games, Journal of Mathematical Economics, 17 (1988), 77-87. doi: 10.1016/0304-4068(88)90029-8.  Google Scholar

[33]

S. Lasaulce and H. Tembine, "Game Theory and Learning for Wireless Networks," Fundamentals and Applications, Academic Press, 2011. Google Scholar

[34]

S. A. Lippman, Applying a new device in the optimization of exponential queueing systems, Operations Research, 23 (1975), 687-710. doi: 10.1287/opre.23.4.687.  Google Scholar

[35]

Allen Mackenzie and Luiz DaSilva, "Game Theory for Wireless Engineers," Synthesis Lectures on Communications, Morgan & Claypool Publishers, 2006. doi: 10.2200/S00014ED1V01Y200508COM001.  Google Scholar

[36]

R. Mazumdar, L. G. Mason and C. Douligeris, Fairness in network optimal flow control: Optimality of product forms, IEEE Trans. on Comm., 39 (1991), 775-782. doi: 10.1109/26.87140.  Google Scholar

[37]

I. Menache and A. Ozdaglar, "Network Games: Theory, Models, and Dynamics," Synthesis Lectures on Communication Networks, Morgan & Claypool Publishers, 2011. doi: 10.2200/S00330ED1V01Y201101CNT009.  Google Scholar

[38]

I. Milchtaich, Congestion games with player-specific payoff functions, Games and Economic Behavior, 13 (1996), 111-124. doi: 10.1006/game.1996.0027.  Google Scholar

[39]

W. Murrey, The application of epidemiology to computer viruses, Comp. Security, 7 (1988), 139-150. Google Scholar

[40]

Noam Nisan, Tim Roughgarden, Éva Tardos and Vijay V. Vazirani, eds., "Algorithmic Game Theory," Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511800481.  Google Scholar

[41]

A. Orda, R. Rom and N. Shimkin, Competitive routing in multi-user communication networks, in "INFOCOM '93. Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking: Foundation for the Future" (San Francisco, CA), IEEE, (1993), 964-971. doi: 10.1109/INFCOM.1993.253270.  Google Scholar

[42]

M. Patriksson, "The Traffic Assignment Problem: Models and Methods," VSP BV, P.O. Box 346, 3700 AH Zeist, The Netherlands, 1994. Google Scholar

[43]

R. W. Rosenthal, A class of games possessing pure strategy Nash equilibria, Int. J. Game Theory, 2 (1973), 65-67. doi: 10.1007/BF01737559.  Google Scholar

[44]

R. W. Rosenthal, The network equilibrium problem in integers, Networks, 3 (1973), 53-59. doi: 10.1002/net.3230030104.  Google Scholar

[45]

William H. Sandholm, "Population Games and Evolutionary Dynamics," Economic Learning and Social Evolution, MIT Press, Cambridge, MA, 2010.  Google Scholar

[46]

J. Maynard Smith, Game theory and the evolution of fighting, in "On Evolution" (J. Maynard Smith), Edinburgh University Press, Edinburgh, (1972), 8-28. Google Scholar

[47]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Evolutionary games in wireless networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40 (2010), 634-646. doi: 10.1109/TSMCB.2009.2034631.  Google Scholar

[48]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Bio-inspired delayed evolutionary game dynamics with networking applications, Telecommunication Systems, 47 (2011), 137-152. doi: 10.1007/s11235-010-9307-1.  Google Scholar

[49]

D. C. Trimble, "A Game-Theoretic Approach to Signal and Receiver Design," Ph.D. Thesis, Nov. 1972. doi: 10.1109/TIT.1972.1054913.  Google Scholar

[50]

T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge Univ Press, 2005. Google Scholar

[51]

J. G. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc. Inst. Civ. Eng., Part 2, 1 (1952), 325-378. Google Scholar

[52]

Y. Zhang and M. Guizani, "Game Theory for Wireless Commun. and Networking," CRC, 2011. Google Scholar

[53]

Yan Zhang and Mohsen Guizani, "Game Theory for Wireless Communications and Networking," Taylor and Francis, 2010. Google Scholar

[54]

I. Ziedins, A paradox in a queueing network with state-dependent routing and loss, Journal of Applied Mathematics and Decision Sciences, 2007 (2007), Article ID 68280, 10 pp. doi: 10.1155/2007/68280.  Google Scholar

[1]

Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial & Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477

[2]

Maide Bucolo, Federica Di Grazia, Luigi Fortuna, Mattia Frasca, Francesca Sapuppo. An environment for complex behaviour detection in bio-potential experiments. Mathematical Biosciences & Engineering, 2008, 5 (2) : 261-276. doi: 10.3934/mbe.2008.5.261

[3]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[4]

Aniello Buonocore, Antonio Di Crescenzo, Alan Hastings. Preface for the special issue of Mathematical Biosciences and Engineering, BIOCOMP 2012. Mathematical Biosciences & Engineering, 2014, 11 (2) : i-ii. doi: 10.3934/mbe.2014.11.2i

[5]

Mohamed A. Tawhid, Ahmed F. Ali. An effective hybrid firefly algorithm with the cuckoo search for engineering optimization problems. Mathematical Foundations of Computing, 2018, 1 (4) : 349-368. doi: 10.3934/mfc.2018017

[6]

Caixia Gao, Enmin Feng, Zongtao Wang, Zhilong Xiu. Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. Journal of Industrial & Management Optimization, 2005, 1 (3) : 377-388. doi: 10.3934/jimo.2005.1.377

[7]

Georgios Konstantinidis. A game theoretic analysis of the cops and robber game. Journal of Dynamics & Games, 2014, 1 (4) : 599-619. doi: 10.3934/jdg.2014.1.599

[8]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[9]

Sen Zhang, Guo Zhou, Yongquan Zhou, Qifang Luo. Quantum-inspired satin bowerbird algorithm with Bloch spherical search for constrained structural optimization. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3509-3523. doi: 10.3934/jimo.2020130

[10]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[11]

Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031

[12]

Ying Ji, Shaojian Qu, Fuxing Chen. Environmental game modeling with uncertainties. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 989-1003. doi: 10.3934/dcdss.2019067

[13]

Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial & Management Optimization, 2014, 10 (3) : 777-794. doi: 10.3934/jimo.2014.10.777

[14]

Inmaculada Antón, Julián López-Gómez. Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 21-30. doi: 10.3934/proc.2013.2013.21

[15]

Xin Du, M. Monir Uddin, A. Mostakim Fony, Md. Tanzim Hossain, Md. Nazmul Islam Shuzan. Iterative Rational Krylov Algorithms for model reduction of a class of constrained structural dynamic system with Engineering applications. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021016

[16]

Ruiheng Cai, Feng-kuang Chiang. A laser-cutting-centered STEM course for improving engineering problem-solving skills of high school students in China. STEM Education, 2021, 1 (3) : 199-224. doi: 10.3934/steme.2021015

[17]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021012

[18]

Abbas Ja'afaru Badakaya, Aminu Sulaiman Halliru, Jamilu Adamu. Game value for a pursuit-evasion differential game problem in a Hilbert space. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021019

[19]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[20]

Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007

 Impact Factor: 

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]