January  2014, 1(1): 1-15. doi: 10.3934/jdg.2014.1.1

Bio-inspired paradigms in network engineering games

1. 

INRIA Sophia-Antipolis, 2004 Route des Lucioles, 06906, Sophia-Antipolis, France

Received  April 2012 Revised  June 2012 Published  June 2013

Network Engineering Games (NEGs) is an emerging branch of game theory developed in Electrical Engineering Departments. It concerns games that arise in all levels of telecommunication networks. There has been a growing interest among researchers in this community in bio-inspired methodologies in recent years due to two reasons. First, many problems in networking have much in common with problems in biology. Examples are (i) propagation of information in networks, that has similar dynamics as propagation of epidemics; (ii) energy management issues in wireless networks and competition over resources are often similar to issues by biologists; (iii) both equilibria concepts as well as replicator dynamics that arise in evolutionary games are quite relevant to NEGs. In this paper we present an overview of applications and tools used in network engineering games, we then describe in more depth bio-inspired tools used in or relevant to network engineering. We present finally an example of a stochastic epidemic game arising in wireless networks that involves competition over the relaying of information.
Citation: Eitan Altman. Bio-inspired paradigms in network engineering games. Journal of Dynamics & Games, 2014, 1 (1) : 1-15. doi: 10.3934/jdg.2014.1.1
References:
[1]

T. Alpcan and T. Başar, "Network Security. A Decision and Game-Theoretic Approach,", Cambridge University Press, (2011). Google Scholar

[2]

E. Altman, "Constrained Markov Decision Processes. Stochastic Modeling,", Chapman & Hall/CRC, (1999). Google Scholar

[3]

E. Altman, R. El Azouzi and V. Abramov, Non-cooperative routing in loss networks,, Performance Evaluation, 49 (2002), 257. doi: 10.1016/S0166-5316(02)00112-8. Google Scholar

[4]

E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez and L. Wynter, A survey on networking games in telecommunications,, Computers and Operations Research, 33 (2006), 286. doi: 10.1016/j.cor.2004.06.005. Google Scholar

[5]

E. Altman and R. El-Azouzi, La théorie des jeux non-coopératifs appliquée aux réseaux de télécommunication,, (in French) Annales des Télécommunications, (2007). Google Scholar

[6]

E. Altman and L. Wynter, Equilibrium, games, and pricing in transportation and telecommunications networks,, Networks and Spatial Economics, 4 (2004), 7. doi: 10.1023/B:NETS.0000015653.52983.61. Google Scholar

[7]

Eitan Altman, A stochastic game approach for competition over popularity in social networks,, Dynamic Games and Applications, (2012). doi: 10.1007/s13235-012-0057-4. Google Scholar

[8]

Eitan Altman and Yezekael Hayel, Markov decision evolutionary games,, IEEE Transactions on Automatic Control, 55 (2010), 1560. doi: 10.1109/TAC.2010.2042230. Google Scholar

[9]

J. Aspnes, K. Chang and A. Yampolskiy, Inoculation strategies for victims of viruses and the sum-of-squares partition problem,, J. Comput. Syst. Sci., 72 (2006), 1077. doi: 10.1016/j.jcss.2006.02.003. Google Scholar

[10]

J. Aspnes, N. Rustagi and J. Saia, Worm versus alert: Who wins in a battle for control of a large-scale network?,, Lecture Notes in Computer Science, 4878 (2007), 443. doi: 10.1007/978-3-540-77096-1_32. Google Scholar

[11]

C. T. Bauch, Imitation dynamics predict vaccinating behavior,, Proc. of The Royal Society, (2005). doi: 10.1098/rspb.2005.3153. Google Scholar

[12]

C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games,, Proceedings of the National Academy of Science, 101 (2004), 13391. doi: 10.1073/pnas.0403823101. Google Scholar

[13]

N. G. Beans, F. P. Kelly and P. G. Taylor, Braess's paradox in a loss network,, J. Appl. Prob., 34 (1997), 155. doi: 10.2307/3215183. Google Scholar

[14]

M. Beckmann, C. B. McGuire and C. B. Winsten, "Studies in the Economics of Transportation,", Yale Univ. Press, (1956). Google Scholar

[15]

T. Berger, The source coding game,, IEEE Trans. on Inform. Theory, IT-17 (1971), 71. Google Scholar

[16]

N. M. Blachman, Communication as a game,, in, (1957), 61. Google Scholar

[17]

D. Braess, Über ein Paradoxien aus der Verkehrsplanung,, (German) Unternehmensforschung, 12 (1968), 258. Google Scholar

[18]

Mung Chiang, Chee Wei Tan, Prashanth Hande and Tian Lan, Power control in wireless cellular networks,, Foundations and Trends in Networking, 2 (2007), 381. doi: 10.1561/1300000009. Google Scholar

[19]

S. Coraluppi and S. I. Marcus, Risk-sensitive queueing,, in, (1997). Google Scholar

[20]

Merouane Debbah and Samson Lasaulce, "Game Theory for Wireless Networks: From Fundamentals to Practice,", Elsevier Science & Technology, (2011). Google Scholar

[21]

C. Douligeris, "Optimal Flow Control and Fairness in Communication Networks: A Game Theoretic Perspective,", Ph.D. Dissertation, (1989). Google Scholar

[22]

T. Ericson, The noncooperative binary adder channel,, IEEE Trans. on Inform. Theory, 32 (1986), 365. doi: 10.1109/TIT.1986.1057190. Google Scholar

[23]

D. Falomari, N. Mandayam and D. Goodman, A new framework for power control in wireless data networks: Games utility and pricing,, in, (1998), 546. Google Scholar

[24]

C. Frenzel, H. Sanneck and S. Hamalainen, "LTE Self-Organising Networks (Son): Network Management Automation for Operational Efficiency,", John Wiley & Sons, (2011). Google Scholar

[25]

A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and Wardrop equilibria,, Networks, 15 (1985), 295. doi: 10.1002/net.3230150303. Google Scholar

[26]

M. T. Hsiao and A. A. Lazar, A game theoretic approach to decentralized flow control of Markovian queueing networks,, in, (1988), 55. Google Scholar

[27]

M. T. Hsiao and A. A. Lazar, Optimal decentralized flow control of Markovian queueing networks with multiple controllers,, Performance Evaluation, 13 (1991), 181. doi: 10.1016/0166-5316(91)90054-7. Google Scholar

[28]

M. H. R. Khouzani, Saswati Sarkar and Eitan Altman, Saddle-point strategies in malware attack,, IEEE Journal on Selected Areas in Communications, 30 (2012), 31. doi: 10.1109/JSAC.2012.120104. Google Scholar

[29]

Man-Tung Tony Hsiao, "Optimal Decentralized Flow Control in Computer Communication Networks,", Ph.D. Thesis, (1986). Google Scholar

[30]

Anna Jaśkiewicz, A note on negative dynamic programming for risk-sensitive control,, Operations Research Letters, 36 (2008), 531. doi: 10.1016/j.orl.2008.03.003. Google Scholar

[31]

Hongbin Ji and Ching-Yao Huang, Non-cooperative uplink power control in cellular radio systems,, Wireless Networks, 4 (1998), 233. Google Scholar

[32]

B. Jovanovic and R. W. Rosenthal, Anonymous sequential games,, Journal of Mathematical Economics, 17 (1988), 77. doi: 10.1016/0304-4068(88)90029-8. Google Scholar

[33]

S. Lasaulce and H. Tembine, "Game Theory and Learning for Wireless Networks,", Fundamentals and Applications, (2011). Google Scholar

[34]

S. A. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687. doi: 10.1287/opre.23.4.687. Google Scholar

[35]

Allen Mackenzie and Luiz DaSilva, "Game Theory for Wireless Engineers,", Synthesis Lectures on Communications, (2006). doi: 10.2200/S00014ED1V01Y200508COM001. Google Scholar

[36]

R. Mazumdar, L. G. Mason and C. Douligeris, Fairness in network optimal flow control: Optimality of product forms,, IEEE Trans. on Comm., 39 (1991), 775. doi: 10.1109/26.87140. Google Scholar

[37]

I. Menache and A. Ozdaglar, "Network Games: Theory, Models, and Dynamics,", Synthesis Lectures on Communication Networks, (2011). doi: 10.2200/S00330ED1V01Y201101CNT009. Google Scholar

[38]

I. Milchtaich, Congestion games with player-specific payoff functions,, Games and Economic Behavior, 13 (1996), 111. doi: 10.1006/game.1996.0027. Google Scholar

[39]

W. Murrey, The application of epidemiology to computer viruses,, Comp. Security, 7 (1988), 139. Google Scholar

[40]

Noam Nisan, Tim Roughgarden, Éva Tardos and Vijay V. Vazirani, eds., "Algorithmic Game Theory,", Cambridge University Press, (2007). doi: 10.1017/CBO9780511800481. Google Scholar

[41]

A. Orda, R. Rom and N. Shimkin, Competitive routing in multi-user communication networks,, in, (1993), 964. doi: 10.1109/INFCOM.1993.253270. Google Scholar

[42]

M. Patriksson, "The Traffic Assignment Problem: Models and Methods,", VSP BV, (3700). Google Scholar

[43]

R. W. Rosenthal, A class of games possessing pure strategy Nash equilibria,, Int. J. Game Theory, 2 (1973), 65. doi: 10.1007/BF01737559. Google Scholar

[44]

R. W. Rosenthal, The network equilibrium problem in integers,, Networks, 3 (1973), 53. doi: 10.1002/net.3230030104. Google Scholar

[45]

William H. Sandholm, "Population Games and Evolutionary Dynamics,", Economic Learning and Social Evolution, (2010). Google Scholar

[46]

J. Maynard Smith, Game theory and the evolution of fighting,, in, (1972), 8. Google Scholar

[47]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Evolutionary games in wireless networks,, IEEE Transactions on Systems, 40 (2010), 634. doi: 10.1109/TSMCB.2009.2034631. Google Scholar

[48]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Bio-inspired delayed evolutionary game dynamics with networking applications,, Telecommunication Systems, 47 (2011), 137. doi: 10.1007/s11235-010-9307-1. Google Scholar

[49]

D. C. Trimble, "A Game-Theoretic Approach to Signal and Receiver Design,", Ph.D. Thesis, (1972). doi: 10.1109/TIT.1972.1054913. Google Scholar

[50]

T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics,", Cambridge Univ Press, (2005). Google Scholar

[51]

J. G. Wardrop, Some theoretical aspects of road traffic research communication networks,, Proc. Inst. Civ. Eng., 1 (1952), 325. Google Scholar

[52]

Y. Zhang and M. Guizani, "Game Theory for Wireless Commun. and Networking,", CRC, (2011). Google Scholar

[53]

Yan Zhang and Mohsen Guizani, "Game Theory for Wireless Communications and Networking,", Taylor and Francis, (2010). Google Scholar

[54]

I. Ziedins, A paradox in a queueing network with state-dependent routing and loss,, Journal of Applied Mathematics and Decision Sciences, 2007 (2007). doi: 10.1155/2007/68280. Google Scholar

show all references

References:
[1]

T. Alpcan and T. Başar, "Network Security. A Decision and Game-Theoretic Approach,", Cambridge University Press, (2011). Google Scholar

[2]

E. Altman, "Constrained Markov Decision Processes. Stochastic Modeling,", Chapman & Hall/CRC, (1999). Google Scholar

[3]

E. Altman, R. El Azouzi and V. Abramov, Non-cooperative routing in loss networks,, Performance Evaluation, 49 (2002), 257. doi: 10.1016/S0166-5316(02)00112-8. Google Scholar

[4]

E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez and L. Wynter, A survey on networking games in telecommunications,, Computers and Operations Research, 33 (2006), 286. doi: 10.1016/j.cor.2004.06.005. Google Scholar

[5]

E. Altman and R. El-Azouzi, La théorie des jeux non-coopératifs appliquée aux réseaux de télécommunication,, (in French) Annales des Télécommunications, (2007). Google Scholar

[6]

E. Altman and L. Wynter, Equilibrium, games, and pricing in transportation and telecommunications networks,, Networks and Spatial Economics, 4 (2004), 7. doi: 10.1023/B:NETS.0000015653.52983.61. Google Scholar

[7]

Eitan Altman, A stochastic game approach for competition over popularity in social networks,, Dynamic Games and Applications, (2012). doi: 10.1007/s13235-012-0057-4. Google Scholar

[8]

Eitan Altman and Yezekael Hayel, Markov decision evolutionary games,, IEEE Transactions on Automatic Control, 55 (2010), 1560. doi: 10.1109/TAC.2010.2042230. Google Scholar

[9]

J. Aspnes, K. Chang and A. Yampolskiy, Inoculation strategies for victims of viruses and the sum-of-squares partition problem,, J. Comput. Syst. Sci., 72 (2006), 1077. doi: 10.1016/j.jcss.2006.02.003. Google Scholar

[10]

J. Aspnes, N. Rustagi and J. Saia, Worm versus alert: Who wins in a battle for control of a large-scale network?,, Lecture Notes in Computer Science, 4878 (2007), 443. doi: 10.1007/978-3-540-77096-1_32. Google Scholar

[11]

C. T. Bauch, Imitation dynamics predict vaccinating behavior,, Proc. of The Royal Society, (2005). doi: 10.1098/rspb.2005.3153. Google Scholar

[12]

C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games,, Proceedings of the National Academy of Science, 101 (2004), 13391. doi: 10.1073/pnas.0403823101. Google Scholar

[13]

N. G. Beans, F. P. Kelly and P. G. Taylor, Braess's paradox in a loss network,, J. Appl. Prob., 34 (1997), 155. doi: 10.2307/3215183. Google Scholar

[14]

M. Beckmann, C. B. McGuire and C. B. Winsten, "Studies in the Economics of Transportation,", Yale Univ. Press, (1956). Google Scholar

[15]

T. Berger, The source coding game,, IEEE Trans. on Inform. Theory, IT-17 (1971), 71. Google Scholar

[16]

N. M. Blachman, Communication as a game,, in, (1957), 61. Google Scholar

[17]

D. Braess, Über ein Paradoxien aus der Verkehrsplanung,, (German) Unternehmensforschung, 12 (1968), 258. Google Scholar

[18]

Mung Chiang, Chee Wei Tan, Prashanth Hande and Tian Lan, Power control in wireless cellular networks,, Foundations and Trends in Networking, 2 (2007), 381. doi: 10.1561/1300000009. Google Scholar

[19]

S. Coraluppi and S. I. Marcus, Risk-sensitive queueing,, in, (1997). Google Scholar

[20]

Merouane Debbah and Samson Lasaulce, "Game Theory for Wireless Networks: From Fundamentals to Practice,", Elsevier Science & Technology, (2011). Google Scholar

[21]

C. Douligeris, "Optimal Flow Control and Fairness in Communication Networks: A Game Theoretic Perspective,", Ph.D. Dissertation, (1989). Google Scholar

[22]

T. Ericson, The noncooperative binary adder channel,, IEEE Trans. on Inform. Theory, 32 (1986), 365. doi: 10.1109/TIT.1986.1057190. Google Scholar

[23]

D. Falomari, N. Mandayam and D. Goodman, A new framework for power control in wireless data networks: Games utility and pricing,, in, (1998), 546. Google Scholar

[24]

C. Frenzel, H. Sanneck and S. Hamalainen, "LTE Self-Organising Networks (Son): Network Management Automation for Operational Efficiency,", John Wiley & Sons, (2011). Google Scholar

[25]

A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and Wardrop equilibria,, Networks, 15 (1985), 295. doi: 10.1002/net.3230150303. Google Scholar

[26]

M. T. Hsiao and A. A. Lazar, A game theoretic approach to decentralized flow control of Markovian queueing networks,, in, (1988), 55. Google Scholar

[27]

M. T. Hsiao and A. A. Lazar, Optimal decentralized flow control of Markovian queueing networks with multiple controllers,, Performance Evaluation, 13 (1991), 181. doi: 10.1016/0166-5316(91)90054-7. Google Scholar

[28]

M. H. R. Khouzani, Saswati Sarkar and Eitan Altman, Saddle-point strategies in malware attack,, IEEE Journal on Selected Areas in Communications, 30 (2012), 31. doi: 10.1109/JSAC.2012.120104. Google Scholar

[29]

Man-Tung Tony Hsiao, "Optimal Decentralized Flow Control in Computer Communication Networks,", Ph.D. Thesis, (1986). Google Scholar

[30]

Anna Jaśkiewicz, A note on negative dynamic programming for risk-sensitive control,, Operations Research Letters, 36 (2008), 531. doi: 10.1016/j.orl.2008.03.003. Google Scholar

[31]

Hongbin Ji and Ching-Yao Huang, Non-cooperative uplink power control in cellular radio systems,, Wireless Networks, 4 (1998), 233. Google Scholar

[32]

B. Jovanovic and R. W. Rosenthal, Anonymous sequential games,, Journal of Mathematical Economics, 17 (1988), 77. doi: 10.1016/0304-4068(88)90029-8. Google Scholar

[33]

S. Lasaulce and H. Tembine, "Game Theory and Learning for Wireless Networks,", Fundamentals and Applications, (2011). Google Scholar

[34]

S. A. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687. doi: 10.1287/opre.23.4.687. Google Scholar

[35]

Allen Mackenzie and Luiz DaSilva, "Game Theory for Wireless Engineers,", Synthesis Lectures on Communications, (2006). doi: 10.2200/S00014ED1V01Y200508COM001. Google Scholar

[36]

R. Mazumdar, L. G. Mason and C. Douligeris, Fairness in network optimal flow control: Optimality of product forms,, IEEE Trans. on Comm., 39 (1991), 775. doi: 10.1109/26.87140. Google Scholar

[37]

I. Menache and A. Ozdaglar, "Network Games: Theory, Models, and Dynamics,", Synthesis Lectures on Communication Networks, (2011). doi: 10.2200/S00330ED1V01Y201101CNT009. Google Scholar

[38]

I. Milchtaich, Congestion games with player-specific payoff functions,, Games and Economic Behavior, 13 (1996), 111. doi: 10.1006/game.1996.0027. Google Scholar

[39]

W. Murrey, The application of epidemiology to computer viruses,, Comp. Security, 7 (1988), 139. Google Scholar

[40]

Noam Nisan, Tim Roughgarden, Éva Tardos and Vijay V. Vazirani, eds., "Algorithmic Game Theory,", Cambridge University Press, (2007). doi: 10.1017/CBO9780511800481. Google Scholar

[41]

A. Orda, R. Rom and N. Shimkin, Competitive routing in multi-user communication networks,, in, (1993), 964. doi: 10.1109/INFCOM.1993.253270. Google Scholar

[42]

M. Patriksson, "The Traffic Assignment Problem: Models and Methods,", VSP BV, (3700). Google Scholar

[43]

R. W. Rosenthal, A class of games possessing pure strategy Nash equilibria,, Int. J. Game Theory, 2 (1973), 65. doi: 10.1007/BF01737559. Google Scholar

[44]

R. W. Rosenthal, The network equilibrium problem in integers,, Networks, 3 (1973), 53. doi: 10.1002/net.3230030104. Google Scholar

[45]

William H. Sandholm, "Population Games and Evolutionary Dynamics,", Economic Learning and Social Evolution, (2010). Google Scholar

[46]

J. Maynard Smith, Game theory and the evolution of fighting,, in, (1972), 8. Google Scholar

[47]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Evolutionary games in wireless networks,, IEEE Transactions on Systems, 40 (2010), 634. doi: 10.1109/TSMCB.2009.2034631. Google Scholar

[48]

Hamidou Tembine, Eitan Altman, Rachid El-Azouzi and Yezekael Hayel, Bio-inspired delayed evolutionary game dynamics with networking applications,, Telecommunication Systems, 47 (2011), 137. doi: 10.1007/s11235-010-9307-1. Google Scholar

[49]

D. C. Trimble, "A Game-Theoretic Approach to Signal and Receiver Design,", Ph.D. Thesis, (1972). doi: 10.1109/TIT.1972.1054913. Google Scholar

[50]

T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics,", Cambridge Univ Press, (2005). Google Scholar

[51]

J. G. Wardrop, Some theoretical aspects of road traffic research communication networks,, Proc. Inst. Civ. Eng., 1 (1952), 325. Google Scholar

[52]

Y. Zhang and M. Guizani, "Game Theory for Wireless Commun. and Networking,", CRC, (2011). Google Scholar

[53]

Yan Zhang and Mohsen Guizani, "Game Theory for Wireless Communications and Networking,", Taylor and Francis, (2010). Google Scholar

[54]

I. Ziedins, A paradox in a queueing network with state-dependent routing and loss,, Journal of Applied Mathematics and Decision Sciences, 2007 (2007). doi: 10.1155/2007/68280. Google Scholar

[1]

Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial & Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477

[2]

Maide Bucolo, Federica Di Grazia, Luigi Fortuna, Mattia Frasca, Francesca Sapuppo. An environment for complex behaviour detection in bio-potential experiments. Mathematical Biosciences & Engineering, 2008, 5 (2) : 261-276. doi: 10.3934/mbe.2008.5.261

[3]

Georgios Konstantinidis. A game theoretic analysis of the cops and robber game. Journal of Dynamics & Games, 2014, 1 (4) : 599-619. doi: 10.3934/jdg.2014.1.599

[4]

Aniello Buonocore, Antonio Di Crescenzo, Alan Hastings. Preface for the special issue of Mathematical Biosciences and Engineering, BIOCOMP 2012. Mathematical Biosciences & Engineering, 2014, 11 (2) : i-ii. doi: 10.3934/mbe.2014.11.2i

[5]

Mohamed A. Tawhid, Ahmed F. Ali. An effective hybrid firefly algorithm with the cuckoo search for engineering optimization problems. Mathematical Foundations of Computing, 2018, 1 (4) : 349-368. doi: 10.3934/mfc.2018017

[6]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[7]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[8]

Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031

[9]

Ying Ji, Shaojian Qu, Fuxing Chen. Environmental game modeling with uncertainties. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 989-1003. doi: 10.3934/dcdss.2019067

[10]

Caixia Gao, Enmin Feng, Zongtao Wang, Zhilong Xiu. Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. Journal of Industrial & Management Optimization, 2005, 1 (3) : 377-388. doi: 10.3934/jimo.2005.1.377

[11]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[12]

Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007

[13]

Zhenbo Wang, Wenxun Xing, Shu-Cherng Fang. Two-person knapsack game. Journal of Industrial & Management Optimization, 2010, 6 (4) : 847-860. doi: 10.3934/jimo.2010.6.847

[14]

Hyeng Keun Koo, Shanjian Tang, Zhou Yang. A Dynkin game under Knightian uncertainty. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5467-5498. doi: 10.3934/dcds.2015.35.5467

[15]

Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial & Management Optimization, 2014, 10 (3) : 777-794. doi: 10.3934/jimo.2014.10.777

[16]

Inmaculada Antón, Julián López-Gómez. Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 21-30. doi: 10.3934/proc.2013.2013.21

[17]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[18]

Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1

[19]

Ido Polak, Nicolas Privault. A stochastic newsvendor game with dynamic retail prices. Journal of Industrial & Management Optimization, 2018, 14 (2) : 731-742. doi: 10.3934/jimo.2017072

[20]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]