January  2014, 1(1): 121-151. doi: 10.3934/jdg.2014.1.121

Dynamics of human decisions

1. 

LIAAD - INESC TEC and Department of Mathematics, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, 4169-007, Portugal, Portugal, Portugal, Portugal

Received  January 2012 Revised  November 2012 Published  June 2013

We study a dichotomous decision model, where individuals can make the decision yes or no and can influence the decisions of others. We characterize all decisions that form Nash equilibria. Taking into account the way individuals influence the decisions of others, we construct the decision tilings where the axes reflect the personal preferences of the individuals for making the decision yes or no. These tilings characterize geometrically all the pure and mixed Nash equilibria. We show, in these tilings, that Nash equilibria form degenerated hysteresis with respect to the dynamics, with the property that the pure Nash equilibria are asymptotically stable and the strict mixed equilibria are unstable. These hysteresis can help to explain the sudden appearance of social, political and economic crises. We observe the existence of limit cycles for the dynamics associated to situations where the individuals keep changing their decisions along time, but exhibiting a periodic repetition in their decisions. We introduce the notion of altruist and individualist leaders and study the way that the leader can affect the individuals to make the decision that the leader pretends.
Citation: Renato Soeiro, Abdelrahim Mousa, Tânia R. Oliveira, Alberto A. Pinto. Dynamics of human decisions. Journal of Dynamics & Games, 2014, 1 (1) : 121-151. doi: 10.3934/jdg.2014.1.121
References:
[1]

I. Ajzen, Perceived behavioral control, self-Efficacy, locus of control, and the theory of planned behavior,, Journal of Applied Social Psychology, 32 (2002), 665.  doi: 10.1111/j.1559-1816.2002.tb00236.x.  Google Scholar

[2]

L. Almeida, J. Cruz, H. Ferreira and A. Pinto, Bayesian-Nash equilibria in theory of planned behavior,, Journal of Difference Equations and Applications, 17 (2011), 1085.  doi: 10.1080/10236190902902331.  Google Scholar

[3]

L. Almeida, J. Cruz, H. Ferreira and A. Pinto, Leadership Model,, in, (2011), 53.  doi: 10.1007/978-3-642-11456-4_5.  Google Scholar

[4]

S. Baker, B. Beadnell, M. Gillmore, D. Morrison, B. Huang and S. Stielstra, The theory of reasoned action and the role of external factors on heterosexual mens monogamy and condom use,, Journal of Applied Social Psychology, 38 (2008), 97.   Google Scholar

[5]

J. Brida, M. Defesa, M. Faias and A. Pinto, A tourist's choice model,, in, (2011), 159.  doi: 10.1007/978-3-642-11456-4_10.  Google Scholar

[6]

J. Brida, M. Defesa, M. Faias and A. Pinto, Strategic choice in tourism with differentiated crowding types,, Economics Bulletin, 30 (2010), 1509.   Google Scholar

[7]

J. Conley and M. Wooders, Tiebout economies with differential genetic types and endogenously chosen crowding characteristics,, Journal of Economic Theory, 98 (2001), 261.  doi: 10.1006/jeth.2000.2716.  Google Scholar

[8]

G. Mudur, Maths for movies, medicine and markets,, in, (2010).   Google Scholar

[9]

A. Pinto, "Game Theory and Duopoly Models,", Interdisciplinary Applied Mathematics Series, (2012).   Google Scholar

[10]

A. Pinto, M. Faias and A. Mousa, Resort pricing and bankruptcy,, in, (2011), 567.  doi: 10.1007/978-3-642-14788-3_40.  Google Scholar

[11]

A. Pinto, A. Mousa, M. Mousa and R. Samarah, Tilings and Bussola for Making Decisions,, in, (2011), 689.  doi: 10.1007/978-3-642-11456-4_44.  Google Scholar

[12]

R. Soeiro, A. Mousa and A. Pinto, Influência Das decis oes individuais num mercado competitivo,, in, ().   Google Scholar

show all references

References:
[1]

I. Ajzen, Perceived behavioral control, self-Efficacy, locus of control, and the theory of planned behavior,, Journal of Applied Social Psychology, 32 (2002), 665.  doi: 10.1111/j.1559-1816.2002.tb00236.x.  Google Scholar

[2]

L. Almeida, J. Cruz, H. Ferreira and A. Pinto, Bayesian-Nash equilibria in theory of planned behavior,, Journal of Difference Equations and Applications, 17 (2011), 1085.  doi: 10.1080/10236190902902331.  Google Scholar

[3]

L. Almeida, J. Cruz, H. Ferreira and A. Pinto, Leadership Model,, in, (2011), 53.  doi: 10.1007/978-3-642-11456-4_5.  Google Scholar

[4]

S. Baker, B. Beadnell, M. Gillmore, D. Morrison, B. Huang and S. Stielstra, The theory of reasoned action and the role of external factors on heterosexual mens monogamy and condom use,, Journal of Applied Social Psychology, 38 (2008), 97.   Google Scholar

[5]

J. Brida, M. Defesa, M. Faias and A. Pinto, A tourist's choice model,, in, (2011), 159.  doi: 10.1007/978-3-642-11456-4_10.  Google Scholar

[6]

J. Brida, M. Defesa, M. Faias and A. Pinto, Strategic choice in tourism with differentiated crowding types,, Economics Bulletin, 30 (2010), 1509.   Google Scholar

[7]

J. Conley and M. Wooders, Tiebout economies with differential genetic types and endogenously chosen crowding characteristics,, Journal of Economic Theory, 98 (2001), 261.  doi: 10.1006/jeth.2000.2716.  Google Scholar

[8]

G. Mudur, Maths for movies, medicine and markets,, in, (2010).   Google Scholar

[9]

A. Pinto, "Game Theory and Duopoly Models,", Interdisciplinary Applied Mathematics Series, (2012).   Google Scholar

[10]

A. Pinto, M. Faias and A. Mousa, Resort pricing and bankruptcy,, in, (2011), 567.  doi: 10.1007/978-3-642-14788-3_40.  Google Scholar

[11]

A. Pinto, A. Mousa, M. Mousa and R. Samarah, Tilings and Bussola for Making Decisions,, in, (2011), 689.  doi: 10.1007/978-3-642-11456-4_44.  Google Scholar

[12]

R. Soeiro, A. Mousa and A. Pinto, Influência Das decis oes individuais num mercado competitivo,, in, ().   Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[8]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[9]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[10]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

 Impact Factor: 

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (4)

[Back to Top]