-
Previous Article
A strategic market game approach for the private provision of public goods
- JDG Home
- This Issue
-
Next Article
Approachability, regret and calibration: Implications and equivalences
Dynamics of large cooperative pulsed-coupled networks
1. | Instituto de Matemática y Estadística Rafael Laguardia, Universidad de la República, Av. Herrera y Reissig 565, C.P.11300, Montevideo |
References:
[1] |
E. Accinelli, S. London and E. Sánchez Carrera, A Model of Imitative Behavior in the Population of Firms and Workers,, Quaderni del Dipartimento di Economia Politica, (2009). Google Scholar |
[2] |
S. Bottani, Synchronization of integrate and fire oscillators with global coupling,, Physical Review E, 54 (1996), 2334.
doi: 10.1103/PhysRevE.54.2334. |
[3] |
R. Boulet, B. Jouve, F. Rossi and N. Villa, Batch kernel SOM and related Laplacian methods for social network analysis,, Neurocomputing, 71 (2008), 1257.
doi: 10.1016/j.neucom.2007.12.026. |
[4] |
E. Catsigeras and P. Guiraud, Integrate and fire neural networks, piecewise contractive maps and limit cycles,, Journ. Math. Biol., 67 (2013), 609.
doi: 10.1007/s00285-012-0560-7. |
[5] |
B. Cessac, A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics,, Journ. Math. Biol., 56 (2008), 311.
doi: 10.1007/s00285-007-0117-3. |
[6] |
B. Cessac and T. Viéville, On Dynamics of Integrate-and-fire Neural Networks with Conductance Based Synapses,, Frontiers In Computational Neuroscience, (2008).
doi: 10.3389/neuro.10.002.2008. |
[7] |
J. R. Chazottes and B. Fernandez (Eds), Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems,, Lecture Notes in Physics, 671 (2005).
|
[8] |
M. Cottrell, M. Olteanu, F. Rossi, J. Rynkiewicz and N. Villa-Vialaneix, Neural networks for complex data,, Künstliche Intelligenz, 26 (2012), 373.
doi: 10.1007/s13218-012-0207-2. |
[9] |
R. Coutinho, B. Fernandez, R. Lima and A. Meyroneinc, Discrete time piecewise affine models of genetic regulatory networks,, Journ. Math. Biol., 52 (2006), 524.
doi: 10.1007/s00285-005-0359-x. |
[10] |
AL. Dutot, J. Rynkiewicz, F. Steiner and J. Rude, A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions,, Environ Model Softw, 22 (2007), 1261.
doi: 10.1016/j.envsoft.2006.08.002. |
[11] |
G. B. Ermentrout and N. Kopell, Oscillator death in systems of coupled neural oscillators,, SIAM Journal on Applied Mathematics, 50 (1990), 125.
doi: 10.1137/0150009. |
[12] |
G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience,, Interdisc. Appl. Math., (2010).
doi: 10.1007/978-0-387-87708-2. |
[13] |
J. Feng, L. Zhu and H. Wang, Stability of Ecosystem induced by mutual interference between predators,, Procedia Environmental Sciences, 2 (2010), 42.
doi: 10.1016/j.proenv.2010.10.007. |
[14] |
R. Golamen, Why learning doesn't add up: Equilibrium selection with a composition of learning rules,, Int. Jroun. Game Theory, 40 (2011), 719.
doi: 10.1007/s00182-010-0265-3. |
[15] |
H. Höglund, Detecting Earnings Management Using Neural Networks,, Doctoral Thesis Hanken School of Economics, (2010). Google Scholar |
[16] |
E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, MIT Press, (2007).
|
[17] |
B. Maillet, M. Olteanu and J. Rynkiewicz, Nonlinear analysis of shocks when financial markets are subject to changes in regime,, in Proc of XIIth European Symposium on Artificial Neural Networks, (2004), 87. Google Scholar |
[18] |
W. Mass and C. M. Bishop (Eds), Pulsed Neural Networks,, MIT Press, (2001). Google Scholar |
[19] |
I. Milchtaich, Representation of finite games as network of congestion,, Int. Journ. Game Theory, 42 (2013), 1085.
doi: 10.1007/s00182-012-0363-5. |
[20] |
R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645.
doi: 10.1137/0150098. |
[21] |
M. A. Jalil and M. Misas, Evaluación de pronósticos de tipo de cambio utilizando redes neuronales y funciones de pérdida asimétricas (Spanish),, Revista Colombiana de Estadística, 30 (2007), 143.
|
[22] |
M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Random graph models of social networks,, Proc. Nal. Acad. Sci. USA, 99 (2002), 2566.
doi: 10.1073/pnas.012582999. |
[23] |
A. Pikovsky and Y. Maistrenko (Editors), Synchronization: Theory and Application,, Kluwer Academic Publ, (2003).
doi: 10.1007/978-94-010-0217-2. |
[24] |
A. Politi and A. Torcini, Stable chaos,, in Nonlinear Dynamics and Chaos: Advances and Perspectives, (2010).
doi: 10.1007/978-3-642-04629-2. |
[25] |
G. M. Ramírez Ávila, J. L. Guisset and J. L. Deneubourg, Synchronization in light-controlled oscillators,, Physica D, 182 (2003), 254.
doi: 10.1016/S0167-2789(03)00135-0. |
[26] |
V. S. H. Raoa and M. N. Kumarb, Estimation of the parameters of an infectious disease model using neural networks,, Nonlinear Analysis: Real World Applications, 11 (2010), 1810.
doi: 10.1016/j.nonrwa.2009.04.006. |
[27] |
N. Rubido, C. Cabeza, S. Kahan, G. M. Ramírez Ávila and A. C. Marti, Synchronization regions of two pulse-coupled electronic piecewise linear oscillators,, Europ. Phys. Journ. D, 62 (2011), 51.
doi: 10.1140/epjd/e2010-00215-4. |
[28] |
G. T. Stamov and I. Stamova, Almost periodic solutions for impulsive neural networks with delay,, Applied Mathematical Modelling, 31 (2007), 1263.
doi: 10.1016/j.apm.2006.04.008. |
[29] |
C. van Vreeswijk, L. F. Abbott and B. Ermentrout, When inhibition not excitation synchronizes neural firing,, Journ. Comput. Neuroscience, 1 (1994), 313.
doi: 10.1007/BF00961879. |
[30] |
D. A. Vasseur and J. Fox, Phase-locking and environmental fluctuations generate synchrony in a predator-prey community,, Nature, 460 (2009), 1007.
doi: 10.1038/nature08208. |
[31] |
D. J. Watts and S. H. Strogatz, Collective Dynamics of Small-World,, Nature (London), 393 (1998), 440. Google Scholar |
[32] |
T. Yang and L. O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication,, IEEE Trans. Circuits Syst., 44 (1997), 976.
doi: 10.1109/81.633887. |
[33] |
Young L.-S, Chaotic phenomena in three setting: Large, noisy and out of equilibrium,, Nonlinearity, 21 (2008).
doi: 10.1088/0951-7715/21/11/T04. |
show all references
References:
[1] |
E. Accinelli, S. London and E. Sánchez Carrera, A Model of Imitative Behavior in the Population of Firms and Workers,, Quaderni del Dipartimento di Economia Politica, (2009). Google Scholar |
[2] |
S. Bottani, Synchronization of integrate and fire oscillators with global coupling,, Physical Review E, 54 (1996), 2334.
doi: 10.1103/PhysRevE.54.2334. |
[3] |
R. Boulet, B. Jouve, F. Rossi and N. Villa, Batch kernel SOM and related Laplacian methods for social network analysis,, Neurocomputing, 71 (2008), 1257.
doi: 10.1016/j.neucom.2007.12.026. |
[4] |
E. Catsigeras and P. Guiraud, Integrate and fire neural networks, piecewise contractive maps and limit cycles,, Journ. Math. Biol., 67 (2013), 609.
doi: 10.1007/s00285-012-0560-7. |
[5] |
B. Cessac, A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics,, Journ. Math. Biol., 56 (2008), 311.
doi: 10.1007/s00285-007-0117-3. |
[6] |
B. Cessac and T. Viéville, On Dynamics of Integrate-and-fire Neural Networks with Conductance Based Synapses,, Frontiers In Computational Neuroscience, (2008).
doi: 10.3389/neuro.10.002.2008. |
[7] |
J. R. Chazottes and B. Fernandez (Eds), Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems,, Lecture Notes in Physics, 671 (2005).
|
[8] |
M. Cottrell, M. Olteanu, F. Rossi, J. Rynkiewicz and N. Villa-Vialaneix, Neural networks for complex data,, Künstliche Intelligenz, 26 (2012), 373.
doi: 10.1007/s13218-012-0207-2. |
[9] |
R. Coutinho, B. Fernandez, R. Lima and A. Meyroneinc, Discrete time piecewise affine models of genetic regulatory networks,, Journ. Math. Biol., 52 (2006), 524.
doi: 10.1007/s00285-005-0359-x. |
[10] |
AL. Dutot, J. Rynkiewicz, F. Steiner and J. Rude, A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions,, Environ Model Softw, 22 (2007), 1261.
doi: 10.1016/j.envsoft.2006.08.002. |
[11] |
G. B. Ermentrout and N. Kopell, Oscillator death in systems of coupled neural oscillators,, SIAM Journal on Applied Mathematics, 50 (1990), 125.
doi: 10.1137/0150009. |
[12] |
G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience,, Interdisc. Appl. Math., (2010).
doi: 10.1007/978-0-387-87708-2. |
[13] |
J. Feng, L. Zhu and H. Wang, Stability of Ecosystem induced by mutual interference between predators,, Procedia Environmental Sciences, 2 (2010), 42.
doi: 10.1016/j.proenv.2010.10.007. |
[14] |
R. Golamen, Why learning doesn't add up: Equilibrium selection with a composition of learning rules,, Int. Jroun. Game Theory, 40 (2011), 719.
doi: 10.1007/s00182-010-0265-3. |
[15] |
H. Höglund, Detecting Earnings Management Using Neural Networks,, Doctoral Thesis Hanken School of Economics, (2010). Google Scholar |
[16] |
E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,, MIT Press, (2007).
|
[17] |
B. Maillet, M. Olteanu and J. Rynkiewicz, Nonlinear analysis of shocks when financial markets are subject to changes in regime,, in Proc of XIIth European Symposium on Artificial Neural Networks, (2004), 87. Google Scholar |
[18] |
W. Mass and C. M. Bishop (Eds), Pulsed Neural Networks,, MIT Press, (2001). Google Scholar |
[19] |
I. Milchtaich, Representation of finite games as network of congestion,, Int. Journ. Game Theory, 42 (2013), 1085.
doi: 10.1007/s00182-012-0363-5. |
[20] |
R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645.
doi: 10.1137/0150098. |
[21] |
M. A. Jalil and M. Misas, Evaluación de pronósticos de tipo de cambio utilizando redes neuronales y funciones de pérdida asimétricas (Spanish),, Revista Colombiana de Estadística, 30 (2007), 143.
|
[22] |
M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Random graph models of social networks,, Proc. Nal. Acad. Sci. USA, 99 (2002), 2566.
doi: 10.1073/pnas.012582999. |
[23] |
A. Pikovsky and Y. Maistrenko (Editors), Synchronization: Theory and Application,, Kluwer Academic Publ, (2003).
doi: 10.1007/978-94-010-0217-2. |
[24] |
A. Politi and A. Torcini, Stable chaos,, in Nonlinear Dynamics and Chaos: Advances and Perspectives, (2010).
doi: 10.1007/978-3-642-04629-2. |
[25] |
G. M. Ramírez Ávila, J. L. Guisset and J. L. Deneubourg, Synchronization in light-controlled oscillators,, Physica D, 182 (2003), 254.
doi: 10.1016/S0167-2789(03)00135-0. |
[26] |
V. S. H. Raoa and M. N. Kumarb, Estimation of the parameters of an infectious disease model using neural networks,, Nonlinear Analysis: Real World Applications, 11 (2010), 1810.
doi: 10.1016/j.nonrwa.2009.04.006. |
[27] |
N. Rubido, C. Cabeza, S. Kahan, G. M. Ramírez Ávila and A. C. Marti, Synchronization regions of two pulse-coupled electronic piecewise linear oscillators,, Europ. Phys. Journ. D, 62 (2011), 51.
doi: 10.1140/epjd/e2010-00215-4. |
[28] |
G. T. Stamov and I. Stamova, Almost periodic solutions for impulsive neural networks with delay,, Applied Mathematical Modelling, 31 (2007), 1263.
doi: 10.1016/j.apm.2006.04.008. |
[29] |
C. van Vreeswijk, L. F. Abbott and B. Ermentrout, When inhibition not excitation synchronizes neural firing,, Journ. Comput. Neuroscience, 1 (1994), 313.
doi: 10.1007/BF00961879. |
[30] |
D. A. Vasseur and J. Fox, Phase-locking and environmental fluctuations generate synchrony in a predator-prey community,, Nature, 460 (2009), 1007.
doi: 10.1038/nature08208. |
[31] |
D. J. Watts and S. H. Strogatz, Collective Dynamics of Small-World,, Nature (London), 393 (1998), 440. Google Scholar |
[32] |
T. Yang and L. O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication,, IEEE Trans. Circuits Syst., 44 (1997), 976.
doi: 10.1109/81.633887. |
[33] |
Young L.-S, Chaotic phenomena in three setting: Large, noisy and out of equilibrium,, Nonlinearity, 21 (2008).
doi: 10.1088/0951-7715/21/11/T04. |
[1] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[2] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[3] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[4] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[5] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[6] |
Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003 |
[7] |
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049 |
[8] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[9] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[10] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[11] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[12] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[13] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[14] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[15] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[16] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[17] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[18] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[19] |
David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121 |
[20] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]