April  2014, 1(2): 299-330. doi: 10.3934/jdg.2014.1.299

Turnpike properties of approximate solutions of dynamic discrete time zero-sum games

1. 

Department of Mathematics, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Received  August 2013 Revised  December 2013 Published  March 2014

We study existence and turnpike properties of approximate solutions for a class of dynamic discrete-time two-player zero-sum games without using convexity-concavity assumptions. We describe the structure of approximate solutions which is independent of the length of the interval, for all sufficiently large intervals and show that approximate solutions are determined mainly by the objective function, and are essentially independent of the choice of interval and endpoint conditions.
Citation: Alexander J. Zaslavski. Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. Journal of Dynamics & Games, 2014, 1 (2) : 299-330. doi: 10.3934/jdg.2014.1.299
References:
[1]

O. Alvarez and M. Bardi, Ergodic problems in differential games,, in Advances in Dynamic Game Theory, 9 (2007), 131.  doi: 10.1007/978-0-8176-4553-3_7.  Google Scholar

[2]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley Interscience, (1984).   Google Scholar

[3]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I,, Physica D, 8 (1983), 381.  doi: 10.1016/0167-2789(83)90233-6.  Google Scholar

[4]

M. Bardi, On differential games with long-time-average cost,, in Advances in Dynamic Games and their Applications, 10 (2009), 3.   Google Scholar

[5]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions,, J. Optim. Theory Appl., 106 (2000), 411.  doi: 10.1023/A:1004611816252.  Google Scholar

[6]

J. Blot and N. Hayek, Sufficient conditions for infinite-horizon calculus of variations problems,, ESAIM Control Optim. Calc. Var., 5 (2000), 279.  doi: 10.1051/cocv:2000111.  Google Scholar

[7]

V. Gaitsgory and M. Quincampoix, Linear programming approach to deterministic infinite horizon optimal control problems with discounting,, SIAM J. Control and Optimization, 48 (2009), 2480.  doi: 10.1137/070696209.  Google Scholar

[8]

M. K. Ghosh and K. S. Mallikarjuna Rao, Differential games with ergodic payoff,, SIAM J. Control Optim., 43 (2005), 2020.  doi: 10.1137/S0363012903404511.  Google Scholar

[9]

H. Jasso-Fuentes and O. Hernandez-Lerma, Characterizations of overtaking optimality for controlled diffusion processes,, Appl. Math. Optim., 57 (2008), 349.  doi: 10.1007/s00245-007-9025-6.  Google Scholar

[10]

O. Hernandez-Lerma and J. B. Lasserre, Zero-sum stochastic games in Borel spaces: Average payoff criteria,, SIAM J. Control Optim., 39 (2000), 1520.  doi: 10.1137/S0363012999361962.  Google Scholar

[11]

V. Kolokoltsov and W. Yang, The turnpike theorems for Markov games,, Dynamic Games and Applications, 2 (2012), 294.  doi: 10.1007/s13235-012-0047-6.  Google Scholar

[12]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics,, Arch. Rational Mech. Anal., 106 (1989), 161.  doi: 10.1007/BF00251430.  Google Scholar

[13]

V. Lykina, S. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem,, J. Math. Anal. Appl, 340 (2008), 498.  doi: 10.1016/j.jmaa.2007.08.008.  Google Scholar

[14]

M. Marcus and A. J. Zaslavski, The structure of extremals of a class of second order variational problems,, Ann. Inst. H. Poincare, 16 (1999), 593.  doi: 10.1016/S0294-1449(99)80029-8.  Google Scholar

[15]

L. W. McKenzie, Turnpike theory,, Econometrica, 44 (1976), 841.  doi: 10.2307/1911532.  Google Scholar

[16]

B. S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions,, Appl. Analysis, 90 (2011), 1075.  doi: 10.1080/00036811003735840.  Google Scholar

[17]

E. Ocana Anaya, P. Cartigny and P. Loisel, Singular infinite horizon calculus of variations. Applications to fisheries management,, J. Nonlinear Convex Anal., 10 (2009), 157.   Google Scholar

[18]

S. Pickenhain, V. Lykina and M. Wagner, On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems,, Control Cybernet, 37 (2008), 451.   Google Scholar

[19]

T. Prieto-Rumeau and O. Hernandez-Lerma, Bias and overtaking equilibria for zero-sum continuous-time Markov games,, Math. Methods Oper. Res., 61 (2005), 437.  doi: 10.1007/s001860400392.  Google Scholar

[20]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule,, American Economic Review, 55 (1965), 486.   Google Scholar

[21]

A. J. Zaslavski, Turnpike property for dynamic discrete time zero-sum games,, Abstract and Applied Analysis, 4 (1999), 21.  doi: 10.1155/S1085337599000020.  Google Scholar

[22]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control,, Springer, (2006).   Google Scholar

[23]

A. J. Zaslavski, The existence and structure of approximate solutions of dynamic discrete time zero-sum games,, Journal of Nonlinear and Convex Analysis, 12 (2011), 49.   Google Scholar

[24]

A. J. Zaslavski, Structure of Solutions of Variational Problems,, SpringerBriefs in Optimization, (2013).  doi: 10.1007/978-1-4614-6387-0.  Google Scholar

[25]

A. J. Zaslavski and A. Leizarowitz, Optimal solutions of linear control systems with nonperiodic integrands,, Mathematics of Operations Research, 22 (1997), 726.  doi: 10.1287/moor.22.3.726.  Google Scholar

show all references

References:
[1]

O. Alvarez and M. Bardi, Ergodic problems in differential games,, in Advances in Dynamic Game Theory, 9 (2007), 131.  doi: 10.1007/978-0-8176-4553-3_7.  Google Scholar

[2]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley Interscience, (1984).   Google Scholar

[3]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I,, Physica D, 8 (1983), 381.  doi: 10.1016/0167-2789(83)90233-6.  Google Scholar

[4]

M. Bardi, On differential games with long-time-average cost,, in Advances in Dynamic Games and their Applications, 10 (2009), 3.   Google Scholar

[5]

J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under sign conditions,, J. Optim. Theory Appl., 106 (2000), 411.  doi: 10.1023/A:1004611816252.  Google Scholar

[6]

J. Blot and N. Hayek, Sufficient conditions for infinite-horizon calculus of variations problems,, ESAIM Control Optim. Calc. Var., 5 (2000), 279.  doi: 10.1051/cocv:2000111.  Google Scholar

[7]

V. Gaitsgory and M. Quincampoix, Linear programming approach to deterministic infinite horizon optimal control problems with discounting,, SIAM J. Control and Optimization, 48 (2009), 2480.  doi: 10.1137/070696209.  Google Scholar

[8]

M. K. Ghosh and K. S. Mallikarjuna Rao, Differential games with ergodic payoff,, SIAM J. Control Optim., 43 (2005), 2020.  doi: 10.1137/S0363012903404511.  Google Scholar

[9]

H. Jasso-Fuentes and O. Hernandez-Lerma, Characterizations of overtaking optimality for controlled diffusion processes,, Appl. Math. Optim., 57 (2008), 349.  doi: 10.1007/s00245-007-9025-6.  Google Scholar

[10]

O. Hernandez-Lerma and J. B. Lasserre, Zero-sum stochastic games in Borel spaces: Average payoff criteria,, SIAM J. Control Optim., 39 (2000), 1520.  doi: 10.1137/S0363012999361962.  Google Scholar

[11]

V. Kolokoltsov and W. Yang, The turnpike theorems for Markov games,, Dynamic Games and Applications, 2 (2012), 294.  doi: 10.1007/s13235-012-0047-6.  Google Scholar

[12]

A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics,, Arch. Rational Mech. Anal., 106 (1989), 161.  doi: 10.1007/BF00251430.  Google Scholar

[13]

V. Lykina, S. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem,, J. Math. Anal. Appl, 340 (2008), 498.  doi: 10.1016/j.jmaa.2007.08.008.  Google Scholar

[14]

M. Marcus and A. J. Zaslavski, The structure of extremals of a class of second order variational problems,, Ann. Inst. H. Poincare, 16 (1999), 593.  doi: 10.1016/S0294-1449(99)80029-8.  Google Scholar

[15]

L. W. McKenzie, Turnpike theory,, Econometrica, 44 (1976), 841.  doi: 10.2307/1911532.  Google Scholar

[16]

B. S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions,, Appl. Analysis, 90 (2011), 1075.  doi: 10.1080/00036811003735840.  Google Scholar

[17]

E. Ocana Anaya, P. Cartigny and P. Loisel, Singular infinite horizon calculus of variations. Applications to fisheries management,, J. Nonlinear Convex Anal., 10 (2009), 157.   Google Scholar

[18]

S. Pickenhain, V. Lykina and M. Wagner, On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems,, Control Cybernet, 37 (2008), 451.   Google Scholar

[19]

T. Prieto-Rumeau and O. Hernandez-Lerma, Bias and overtaking equilibria for zero-sum continuous-time Markov games,, Math. Methods Oper. Res., 61 (2005), 437.  doi: 10.1007/s001860400392.  Google Scholar

[20]

P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule,, American Economic Review, 55 (1965), 486.   Google Scholar

[21]

A. J. Zaslavski, Turnpike property for dynamic discrete time zero-sum games,, Abstract and Applied Analysis, 4 (1999), 21.  doi: 10.1155/S1085337599000020.  Google Scholar

[22]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control,, Springer, (2006).   Google Scholar

[23]

A. J. Zaslavski, The existence and structure of approximate solutions of dynamic discrete time zero-sum games,, Journal of Nonlinear and Convex Analysis, 12 (2011), 49.   Google Scholar

[24]

A. J. Zaslavski, Structure of Solutions of Variational Problems,, SpringerBriefs in Optimization, (2013).  doi: 10.1007/978-1-4614-6387-0.  Google Scholar

[25]

A. J. Zaslavski and A. Leizarowitz, Optimal solutions of linear control systems with nonperiodic integrands,, Mathematics of Operations Research, 22 (1997), 726.  doi: 10.1287/moor.22.3.726.  Google Scholar

[1]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[2]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[3]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[4]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[5]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[6]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[7]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[8]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

 Impact Factor: 

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]