• Previous Article
    Policy improvement for perfect information additive reward and additive transition stochastic games with discounted and average payoffs
  • JDG Home
  • This Issue
  • Next Article
    Preface: Special Issue in Honor of the 60th Birthday of Sylvain Sorin
July  2014, 1(3): 331-346. doi: 10.3934/jdg.2014.1.331

Asymptotic behavior of compositions of under-relaxed nonexpansive operators

1. 

Université Paris 1 Panthéon-Sorbonne, SAMM – EA 4543, 75013 Paris, France

2. 

Sorbonne Universités – UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France

3. 

Universidad de Chile, Departamento de Ingeniería Industrial, Santiago, Chile

Received  April 2013 Revised  October 2013 Published  July 2014

In general there exists no relationship between the fixed point sets of the composition and of the average of a family of nonexpansive operators in Hilbert spaces. In this paper, we establish an asymptotic principle connecting the cycles generated by under-relaxed compositions of nonexpansive operators to the fixed points of the average of these operators. In the special case when the operators are projectors onto closed convex sets, we prove a conjecture by De Pierro which has so far been established only for projections onto affine subspaces.
Citation: Jean-Bernard Baillon, Patrick L. Combettes, Roberto Cominetti. Asymptotic behavior of compositions of under-relaxed nonexpansive operators. Journal of Dynamics & Games, 2014, 1 (3) : 331-346. doi: 10.3934/jdg.2014.1.331
References:
[1]

H. Attouch, L. M. Briceño-Arias and P. L. Combettes, A parallel splitting method for coupled monotone inclusions,, SIAM J. Control Optim., 48 (2010), 3246.  doi: 10.1137/090754297.  Google Scholar

[2]

J.-B. Baillon, P. L. Combettes and R. Cominetti, There is no variational characterization of the cycles in the method of periodic projections,, J. Funct. Anal., 262 (2012), 400.  doi: 10.1016/j.jfa.2011.09.002.  Google Scholar

[3]

H. H. Bauschke and J. M. Borwein, On the convergence of von Neumann's alternating projection algorithm for two sets,, Set-Valued Anal., 1 (1993), 185.  doi: 10.1007/BF01027691.  Google Scholar

[4]

H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke and H. Wolkowicz, eds., Fixed-Point Algorithms for Inverse Problems in Science and Engineering,, Springer-Verlag, (2011).  doi: 10.1007/978-1-4419-9569-8.  Google Scholar

[5]

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces,, Springer, (2011).  doi: 10.1007/978-1-4419-9467-7.  Google Scholar

[6]

H. H. Bauschke and M. R. Edwards, A conjecture by De Pierro is true for translates of regular subspaces,, J. Nonlinear Convex Anal., 6 (2005), 93.   Google Scholar

[7]

H. H. Bauschke, X. Wang and C. J. S. Wylie, Fixed points of averages of resolvents: Geometry and algorithms,, SIAM J. Optim., 22 (2012), 24.  doi: 10.1137/110823778.  Google Scholar

[8]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland/Elsevier, (1973).   Google Scholar

[9]

R. E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space,, J. Funct. Anal., 18 (1975), 15.  doi: 10.1016/0022-1236(75)90027-0.  Google Scholar

[10]

C. L. Byrne, Applied Iterative Methods,, A. K. Peters, (2008).   Google Scholar

[11]

A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces,, Lecture Notes in Mathematics, (2057).   Google Scholar

[12]

Y. Censor, P. P. B. Eggermont and D. Gordon, Strong under-relaxation in Kaczmarz's method for inconsistent systems,, Numer. Math., 41 (1983), 83.  doi: 10.1007/BF01396307.  Google Scholar

[13]

P. L. Combettes, Inconsistent signal feasibility problems: Least-squares solutions in a product space,, IEEE Trans. Signal Process., 42 (1994), 2955.  doi: 10.1109/78.330356.  Google Scholar

[14]

A. R. De Pierro, From parallel to sequential projection methods and vice versa in convex feasibility: Results and conjectures,, in Inherently Parallel Algorithms for Feasibility and Optimization, (2001), 187.  doi: 10.1016/S1570-579X(01)80012-4.  Google Scholar

[15]

A. R. De Pierro and A. N. Iusem, A parallel projection method for finding a common point of a family of convex sets,, Pesquisa Operacional, 5 (1985), 1.   Google Scholar

[16]

L. G. Gubin, B. T. Polyak and E. V. Raik, The method of projections for finding the common point of convex sets,, Comput. Math. Math. Phys., 7 (1967), 1.  doi: 10.1016/0041-5553(67)90113-9.  Google Scholar

[17]

W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space,, J. Math. Anal. Appl., 14 (1966), 276.  doi: 10.1016/0022-247X(66)90027-8.  Google Scholar

[18]

X. Wang and H. H. Bauschke, Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial answer to a question by C. Byrne,, Nonlinear Anal., 74 (2011), 4550.  doi: 10.1016/j.na.2011.04.024.  Google Scholar

[19]

E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1]

H. Attouch, L. M. Briceño-Arias and P. L. Combettes, A parallel splitting method for coupled monotone inclusions,, SIAM J. Control Optim., 48 (2010), 3246.  doi: 10.1137/090754297.  Google Scholar

[2]

J.-B. Baillon, P. L. Combettes and R. Cominetti, There is no variational characterization of the cycles in the method of periodic projections,, J. Funct. Anal., 262 (2012), 400.  doi: 10.1016/j.jfa.2011.09.002.  Google Scholar

[3]

H. H. Bauschke and J. M. Borwein, On the convergence of von Neumann's alternating projection algorithm for two sets,, Set-Valued Anal., 1 (1993), 185.  doi: 10.1007/BF01027691.  Google Scholar

[4]

H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke and H. Wolkowicz, eds., Fixed-Point Algorithms for Inverse Problems in Science and Engineering,, Springer-Verlag, (2011).  doi: 10.1007/978-1-4419-9569-8.  Google Scholar

[5]

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces,, Springer, (2011).  doi: 10.1007/978-1-4419-9467-7.  Google Scholar

[6]

H. H. Bauschke and M. R. Edwards, A conjecture by De Pierro is true for translates of regular subspaces,, J. Nonlinear Convex Anal., 6 (2005), 93.   Google Scholar

[7]

H. H. Bauschke, X. Wang and C. J. S. Wylie, Fixed points of averages of resolvents: Geometry and algorithms,, SIAM J. Optim., 22 (2012), 24.  doi: 10.1137/110823778.  Google Scholar

[8]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland/Elsevier, (1973).   Google Scholar

[9]

R. E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space,, J. Funct. Anal., 18 (1975), 15.  doi: 10.1016/0022-1236(75)90027-0.  Google Scholar

[10]

C. L. Byrne, Applied Iterative Methods,, A. K. Peters, (2008).   Google Scholar

[11]

A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces,, Lecture Notes in Mathematics, (2057).   Google Scholar

[12]

Y. Censor, P. P. B. Eggermont and D. Gordon, Strong under-relaxation in Kaczmarz's method for inconsistent systems,, Numer. Math., 41 (1983), 83.  doi: 10.1007/BF01396307.  Google Scholar

[13]

P. L. Combettes, Inconsistent signal feasibility problems: Least-squares solutions in a product space,, IEEE Trans. Signal Process., 42 (1994), 2955.  doi: 10.1109/78.330356.  Google Scholar

[14]

A. R. De Pierro, From parallel to sequential projection methods and vice versa in convex feasibility: Results and conjectures,, in Inherently Parallel Algorithms for Feasibility and Optimization, (2001), 187.  doi: 10.1016/S1570-579X(01)80012-4.  Google Scholar

[15]

A. R. De Pierro and A. N. Iusem, A parallel projection method for finding a common point of a family of convex sets,, Pesquisa Operacional, 5 (1985), 1.   Google Scholar

[16]

L. G. Gubin, B. T. Polyak and E. V. Raik, The method of projections for finding the common point of convex sets,, Comput. Math. Math. Phys., 7 (1967), 1.  doi: 10.1016/0041-5553(67)90113-9.  Google Scholar

[17]

W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space,, J. Math. Anal. Appl., 14 (1966), 276.  doi: 10.1016/0022-247X(66)90027-8.  Google Scholar

[18]

X. Wang and H. H. Bauschke, Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial answer to a question by C. Byrne,, Nonlinear Anal., 74 (2011), 4550.  doi: 10.1016/j.na.2011.04.024.  Google Scholar

[19]

E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[1]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[2]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[3]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[4]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[5]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[6]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[7]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[8]

G. A. Swarup. On the cut point conjecture. Electronic Research Announcements, 1996, 2: 98-100.

[9]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Local study of a renormalization operator for 1D maps under quasiperiodic forcing. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1171-1188. doi: 10.3934/dcdss.2016047

[10]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020040

[11]

Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457

[12]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[13]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[14]

Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027

[15]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[16]

Yakov Varshavsky. A proof of a generalization of Deligne's conjecture. Electronic Research Announcements, 2005, 11: 78-88.

[17]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[18]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[19]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems & Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[20]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]