July  2014, 1(3): 471-484. doi: 10.3934/jdg.2014.1.471

General limit value in dynamic programming

1. 

TSE (GREMAQ, Université Toulouse 1 Capitole and GDR 2932 Théorie des Jeux), 21 allée de Brienne, 31000 Toulouse, France

Received  December 2012 Revised  May 2013 Published  July 2014

We consider a dynamic programming problem with arbitrary state space and bounded rewards. Is it possible to uniquely define a limit value for the problem, when the ``patience" of the decision-maker tends to infinity ? We consider, for each evaluation $\theta$ (a probability distribution over positive integers) the value function $v_{\theta}$ of the problem where the weight of any stage $t$ is given by $\theta_t$, and we investigate the uniform convergence of a sequence $(v_{\theta^k})_k$ when the ``impatience" of the evaluations vanishes, in the sense that $\sum_{t} | \theta^k_{t}-\theta^k_{t+1}| \rightarrow_{k \to \infty} 0.$ We prove that this uniform convergence happens if and only if the metric space $\{v_{\theta^k}, k\geq 1\}$ is totally bounded. Moreover there exists a particular function $v^*$, independent of the particular chosen sequence $({\theta^k})_k$, such that any limit point of such sequence of value functions is precisely $v^*$. The result applies in particular to discounted payoffs when the discount factor vanishes, as well as to average payoffs where the number of stages goes to infinity, and extends to models with stochastic transitions.
Citation: Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471
References:
[1]

D. Blackwell, Discrete dynamic programming,, The Annals of Mathematical Statistics, 33 (1962), 719.  doi: 10.1214/aoms/1177704593.  Google Scholar

[2]

E. Lehrer and D. Monderer, Discounting versus averaging in dynamic programming,, Games and Economic Behavior, 6 (1994), 97.  doi: 10.1006/game.1994.1005.  Google Scholar

[3]

E. Lehrer and D. Monderer, A uniform tauberian theorem in dynamic programming,, Mathematics of Operations Research, 17 (1992), 303.  doi: 10.1287/moor.17.2.303.  Google Scholar

[4]

S. Lippman, Criterion equivalence in discrete dynamic programming,, Operations Research, 17 (1969), 920.  doi: 10.1287/opre.17.5.920.  Google Scholar

[5]

A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Springer-Verlag, (1996).  doi: 10.1007/978-1-4612-4002-0.  Google Scholar

[6]

J.-F. Mertens and A. Neyman, Stochastic games,, International Journal of Game Theory, 10 (1981), 53.  doi: 10.1007/BF01769259.  Google Scholar

[7]

D. Monderer and S. Sorin, Asymptotic properties in dynamic programming,, International Journal of Game Theory, 22 (1993), 1.  doi: 10.1007/BF01245566.  Google Scholar

[8]

J. Renault, Uniform value in dynamic programming,, Journal of the European Mathematical Society, 13 (2011), 309.  doi: 10.4171/JEMS/254.  Google Scholar

[9]

J. Renault and X. Venel, A distance for probability spaces, and long-term values in Markov Decision Processes and Repeated Games,, preprint, (2012).   Google Scholar

show all references

References:
[1]

D. Blackwell, Discrete dynamic programming,, The Annals of Mathematical Statistics, 33 (1962), 719.  doi: 10.1214/aoms/1177704593.  Google Scholar

[2]

E. Lehrer and D. Monderer, Discounting versus averaging in dynamic programming,, Games and Economic Behavior, 6 (1994), 97.  doi: 10.1006/game.1994.1005.  Google Scholar

[3]

E. Lehrer and D. Monderer, A uniform tauberian theorem in dynamic programming,, Mathematics of Operations Research, 17 (1992), 303.  doi: 10.1287/moor.17.2.303.  Google Scholar

[4]

S. Lippman, Criterion equivalence in discrete dynamic programming,, Operations Research, 17 (1969), 920.  doi: 10.1287/opre.17.5.920.  Google Scholar

[5]

A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Springer-Verlag, (1996).  doi: 10.1007/978-1-4612-4002-0.  Google Scholar

[6]

J.-F. Mertens and A. Neyman, Stochastic games,, International Journal of Game Theory, 10 (1981), 53.  doi: 10.1007/BF01769259.  Google Scholar

[7]

D. Monderer and S. Sorin, Asymptotic properties in dynamic programming,, International Journal of Game Theory, 22 (1993), 1.  doi: 10.1007/BF01245566.  Google Scholar

[8]

J. Renault, Uniform value in dynamic programming,, Journal of the European Mathematical Society, 13 (2011), 309.  doi: 10.4171/JEMS/254.  Google Scholar

[9]

J. Renault and X. Venel, A distance for probability spaces, and long-term values in Markov Decision Processes and Repeated Games,, preprint, (2012).   Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[4]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[12]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[13]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]