-
Previous Article
Local stability of strict equilibria under evolutionary game dynamics
- JDG Home
- This Issue
-
Next Article
A primal condition for approachability with partial monitoring
General limit value in dynamic programming
1. | TSE (GREMAQ, Université Toulouse 1 Capitole and GDR 2932 Théorie des Jeux), 21 allée de Brienne, 31000 Toulouse, France |
References:
[1] |
D. Blackwell, Discrete dynamic programming,, The Annals of Mathematical Statistics, 33 (1962), 719.
doi: 10.1214/aoms/1177704593. |
[2] |
E. Lehrer and D. Monderer, Discounting versus averaging in dynamic programming,, Games and Economic Behavior, 6 (1994), 97.
doi: 10.1006/game.1994.1005. |
[3] |
E. Lehrer and D. Monderer, A uniform tauberian theorem in dynamic programming,, Mathematics of Operations Research, 17 (1992), 303.
doi: 10.1287/moor.17.2.303. |
[4] |
S. Lippman, Criterion equivalence in discrete dynamic programming,, Operations Research, 17 (1969), 920.
doi: 10.1287/opre.17.5.920. |
[5] |
A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Springer-Verlag, (1996).
doi: 10.1007/978-1-4612-4002-0. |
[6] |
J.-F. Mertens and A. Neyman, Stochastic games,, International Journal of Game Theory, 10 (1981), 53.
doi: 10.1007/BF01769259. |
[7] |
D. Monderer and S. Sorin, Asymptotic properties in dynamic programming,, International Journal of Game Theory, 22 (1993), 1.
doi: 10.1007/BF01245566. |
[8] |
J. Renault, Uniform value in dynamic programming,, Journal of the European Mathematical Society, 13 (2011), 309.
doi: 10.4171/JEMS/254. |
[9] |
J. Renault and X. Venel, A distance for probability spaces, and long-term values in Markov Decision Processes and Repeated Games,, preprint, (2012). Google Scholar |
show all references
References:
[1] |
D. Blackwell, Discrete dynamic programming,, The Annals of Mathematical Statistics, 33 (1962), 719.
doi: 10.1214/aoms/1177704593. |
[2] |
E. Lehrer and D. Monderer, Discounting versus averaging in dynamic programming,, Games and Economic Behavior, 6 (1994), 97.
doi: 10.1006/game.1994.1005. |
[3] |
E. Lehrer and D. Monderer, A uniform tauberian theorem in dynamic programming,, Mathematics of Operations Research, 17 (1992), 303.
doi: 10.1287/moor.17.2.303. |
[4] |
S. Lippman, Criterion equivalence in discrete dynamic programming,, Operations Research, 17 (1969), 920.
doi: 10.1287/opre.17.5.920. |
[5] |
A. P. Maitra and W. D. Sudderth, Discrete Gambling and Stochastic Games,, Springer-Verlag, (1996).
doi: 10.1007/978-1-4612-4002-0. |
[6] |
J.-F. Mertens and A. Neyman, Stochastic games,, International Journal of Game Theory, 10 (1981), 53.
doi: 10.1007/BF01769259. |
[7] |
D. Monderer and S. Sorin, Asymptotic properties in dynamic programming,, International Journal of Game Theory, 22 (1993), 1.
doi: 10.1007/BF01245566. |
[8] |
J. Renault, Uniform value in dynamic programming,, Journal of the European Mathematical Society, 13 (2011), 309.
doi: 10.4171/JEMS/254. |
[9] |
J. Renault and X. Venel, A distance for probability spaces, and long-term values in Markov Decision Processes and Repeated Games,, preprint, (2012). Google Scholar |
[1] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[2] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[3] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[4] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[7] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[8] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[9] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[10] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[11] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[12] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[13] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[14] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[15] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[16] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[17] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[18] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[19] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[20] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]