July  2014, 1(3): 485-495. doi: 10.3934/jdg.2014.1.485

Local stability of strict equilibria under evolutionary game dynamics

1. 

Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706, United States

Received  November 2012 Revised  July 2013 Published  July 2014

We consider the stability of strict equilibrium under deterministic evolutionary game dynamics. We show that if the correlation between strategies' growth rates and payoffs is positive and bounded away from zero in a neighborhood of a strict equilibrium, then this equilibrium is locally stable.
Citation: William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics and Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485
References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations, in Contributions to the Theory of Games I, (eds. H. W. Kuhn and A. W. Tucker) Annals of Mathematics Studies, 24, Princeton University Press, Princeton, 1950, 73-79.

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games, Mathematical Social Sciences, 34 (1997), 1-19. doi: 10.1016/S0165-4896(97)00009-7.

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability, Journal of Economic Theory, 113 (2003), 51-75. doi: 10.1016/S0022-0531(03)00078-4.

[4]

D. Friedman, Evolutionary games in economics, Econometrica, 59 (1991), 637-666. doi: 10.2307/2938222.

[5]

J. Hofbauer, Stability for the Best Response Dynamics, Unpublished manuscript, University of Vienna, 1995.

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS, Selection, 1 (2000), 81-88.

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics, Journal of Economic Theory, 144 (2009), 1665-1693. doi: 10.1016/j.jet.2009.01.007.

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics, Journal of Theoretical Biology, 81 (1979), 609-612. doi: 10.1016/0022-5193(79)90058-4.

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge ,1988.

[10]

E. Hopkins, A note on best response dynamics, Games and Economic Behavior, 29 (1999), 138-150. doi: 10.1006/game.1997.0636.

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games, Games and Economic Behavior, 64 (2008), 565-590. doi: 10.1016/j.geb.2008.02.002.

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties, International Journal of Game Theory, 19 (1990), 59-89. doi: 10.1007/BF01753708.

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games, Journal of Economic Theory, 57 (1992), 363-391. doi: 10.1016/0022-0531(92)90041-F.

[15]

W. H. Sandholm, Potential games with continuous player sets, Journal of Economic Theory, 97 (2001), 81-108. doi: 10.1006/jeth.2000.2696.

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics, Journal of Economic Theory, 124 (2005), 149-170. doi: 10.1016/j.jet.2005.02.003.

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics, Theoretical Economics, 5 (2010), 27-50. doi: 10.3982/TE505.

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium, Games, 1 (2010), 3-17. doi: 10.3390/g1010003.

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, 2010.

[20]

B. Skyrms, The Dynamics of Rational Deliberation, Harvard University Press, Cambridge, 1990.

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov, Transportation Science, 18 (1984), 245-252. doi: 10.1287/trsc.18.3.245.

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games, Games and Economic Behavior, 5 (1993), 455-484. doi: 10.1006/game.1993.1025.

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145-156. doi: 10.1016/0025-5564(78)90077-9.

[24]

J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, 1995.

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'. Journal of Economic Theory, 69 (1996), 165-171.

[26]

E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, 1979), Lecture Notes in Mathematics, 819, Springer, Berlin, 1980, 472-497.

show all references

References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations, in Contributions to the Theory of Games I, (eds. H. W. Kuhn and A. W. Tucker) Annals of Mathematics Studies, 24, Princeton University Press, Princeton, 1950, 73-79.

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games, Mathematical Social Sciences, 34 (1997), 1-19. doi: 10.1016/S0165-4896(97)00009-7.

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability, Journal of Economic Theory, 113 (2003), 51-75. doi: 10.1016/S0022-0531(03)00078-4.

[4]

D. Friedman, Evolutionary games in economics, Econometrica, 59 (1991), 637-666. doi: 10.2307/2938222.

[5]

J. Hofbauer, Stability for the Best Response Dynamics, Unpublished manuscript, University of Vienna, 1995.

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS, Selection, 1 (2000), 81-88.

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics, Journal of Economic Theory, 144 (2009), 1665-1693. doi: 10.1016/j.jet.2009.01.007.

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics, Journal of Theoretical Biology, 81 (1979), 609-612. doi: 10.1016/0022-5193(79)90058-4.

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge ,1988.

[10]

E. Hopkins, A note on best response dynamics, Games and Economic Behavior, 29 (1999), 138-150. doi: 10.1006/game.1997.0636.

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games, Games and Economic Behavior, 64 (2008), 565-590. doi: 10.1016/j.geb.2008.02.002.

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties, International Journal of Game Theory, 19 (1990), 59-89. doi: 10.1007/BF01753708.

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games, Journal of Economic Theory, 57 (1992), 363-391. doi: 10.1016/0022-0531(92)90041-F.

[15]

W. H. Sandholm, Potential games with continuous player sets, Journal of Economic Theory, 97 (2001), 81-108. doi: 10.1006/jeth.2000.2696.

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics, Journal of Economic Theory, 124 (2005), 149-170. doi: 10.1016/j.jet.2005.02.003.

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics, Theoretical Economics, 5 (2010), 27-50. doi: 10.3982/TE505.

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium, Games, 1 (2010), 3-17. doi: 10.3390/g1010003.

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, 2010.

[20]

B. Skyrms, The Dynamics of Rational Deliberation, Harvard University Press, Cambridge, 1990.

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov, Transportation Science, 18 (1984), 245-252. doi: 10.1287/trsc.18.3.245.

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games, Games and Economic Behavior, 5 (1993), 455-484. doi: 10.1006/game.1993.1025.

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145-156. doi: 10.1016/0025-5564(78)90077-9.

[24]

J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, 1995.

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'. Journal of Economic Theory, 69 (1996), 165-171.

[26]

E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, 1979), Lecture Notes in Mathematics, 819, Springer, Berlin, 1980, 472-497.

[1]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[2]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[4]

Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098

[5]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[6]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[7]

Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021030

[8]

Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803

[9]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[10]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[11]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[12]

D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3093-3111. doi: 10.3934/cpaa.2021097

[13]

Saulo R.M. Barros, Antônio L. Pereira, Cláudio Possani, Adilson Simonis. Spatially periodic equilibria for a non local evolution equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 937-948. doi: 10.3934/dcds.2003.9.937

[14]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[15]

Daoming Dai, Lei Liu, Xuanyu Wu. Analysis of the short-term game and long-term evolutionary game behaviors of the waste battery remanufacturing market considering government subsidies. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022119

[16]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[17]

Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences & Engineering, 2016, 13 (1) : 101-118. doi: 10.3934/mbe.2016.13.101

[18]

Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663

[19]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics and Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[20]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

 Impact Factor: 

Metrics

  • PDF downloads (182)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]