July  2014, 1(3): 485-495. doi: 10.3934/jdg.2014.1.485

Local stability of strict equilibria under evolutionary game dynamics

1. 

Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706, United States

Received  November 2012 Revised  July 2013 Published  July 2014

We consider the stability of strict equilibrium under deterministic evolutionary game dynamics. We show that if the correlation between strategies' growth rates and payoffs is positive and bounded away from zero in a neighborhood of a strict equilibrium, then this equilibrium is locally stable.
Citation: William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485
References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73.   Google Scholar

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1.  doi: 10.1016/S0165-4896(97)00009-7.  Google Scholar

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51.  doi: 10.1016/S0022-0531(03)00078-4.  Google Scholar

[4]

D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637.  doi: 10.2307/2938222.  Google Scholar

[5]

J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995).   Google Scholar

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81.   Google Scholar

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665.  doi: 10.1016/j.jet.2009.01.007.  Google Scholar

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609.  doi: 10.1016/0022-5193(79)90058-4.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, ().   Google Scholar

[10]

E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138.  doi: 10.1006/game.1997.0636.  Google Scholar

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565.  doi: 10.1016/j.geb.2008.02.002.  Google Scholar

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.   Google Scholar

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59.  doi: 10.1007/BF01753708.  Google Scholar

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363.  doi: 10.1016/0022-0531(92)90041-F.  Google Scholar

[15]

W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81.  doi: 10.1006/jeth.2000.2696.  Google Scholar

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149.  doi: 10.1016/j.jet.2005.02.003.  Google Scholar

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27.  doi: 10.3982/TE505.  Google Scholar

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3.  doi: 10.3390/g1010003.  Google Scholar

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[20]

B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990).   Google Scholar

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245.  doi: 10.1287/trsc.18.3.245.  Google Scholar

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455.  doi: 10.1006/game.1993.1025.  Google Scholar

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[24]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165.   Google Scholar

[26]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472.   Google Scholar

show all references

References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73.   Google Scholar

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1.  doi: 10.1016/S0165-4896(97)00009-7.  Google Scholar

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51.  doi: 10.1016/S0022-0531(03)00078-4.  Google Scholar

[4]

D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637.  doi: 10.2307/2938222.  Google Scholar

[5]

J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995).   Google Scholar

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81.   Google Scholar

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665.  doi: 10.1016/j.jet.2009.01.007.  Google Scholar

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609.  doi: 10.1016/0022-5193(79)90058-4.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, ().   Google Scholar

[10]

E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138.  doi: 10.1006/game.1997.0636.  Google Scholar

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565.  doi: 10.1016/j.geb.2008.02.002.  Google Scholar

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.   Google Scholar

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59.  doi: 10.1007/BF01753708.  Google Scholar

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363.  doi: 10.1016/0022-0531(92)90041-F.  Google Scholar

[15]

W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81.  doi: 10.1006/jeth.2000.2696.  Google Scholar

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149.  doi: 10.1016/j.jet.2005.02.003.  Google Scholar

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27.  doi: 10.3982/TE505.  Google Scholar

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3.  doi: 10.3390/g1010003.  Google Scholar

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[20]

B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990).   Google Scholar

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245.  doi: 10.1287/trsc.18.3.245.  Google Scholar

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455.  doi: 10.1006/game.1993.1025.  Google Scholar

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[24]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165.   Google Scholar

[26]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472.   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[9]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[14]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

 Impact Factor: 

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]