-
Previous Article
Game dynamics and Nash equilibria
- JDG Home
- This Issue
-
Next Article
A prequential test for exchangeable theories
Strong approachability
1. | School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, Israel |
References:
[1] |
R. J. Aumann and M. Maschler, Repeated games of incomplete information: A survey of recent results, in Reports of the U.S. Arms Control and Disarmament Agency ST-116, Washingtom, D.C., Chapter III, 1967, 287-403. |
[2] |
R. J. Aumann and M. Maschler, Repeated Games with Incomplete Information, MIT Press, Cambridge, 1995. |
[3] |
D. Blackwell, An analog of the minmax theorem for vector payoffs, Pacific Journal of Mathematics, 6 (1956), 1-8.
doi: 10.2140/pjm.1956.6.1. |
[4] |
N. Cesa-Bianchi and G. Lugosi, Prediction, Learning and Games, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511546921. |
[5] |
D. P. Foster and R. V. Vohra, Calibrated learning and correlated equilibrium, Games Economics Behavior, 21 (1997), 40-55.
doi: 10.1006/game.1997.0595. |
[6] |
M. A. Goberna, E. Gonzalez, J. E. Martinez-Legaz and M. I. Todorov, Motzkin decomposition of closed convex sets, Journal of Mathematical Analysis and Applications, 364 (2010), 209-221.
doi: 10.1016/j.jmaa.2009.10.015. |
[7] |
S. Hart and A. Mas-Colell, A simple adaptive procedure leading to correlated equilibrium, Econometrica, 68 (2000), 1127-1150.
doi: 10.1111/1468-0262.00153. |
[8] |
T. F. Hou, Approachability in a two-person game, The Annals of Mathematical Statistics, 42 (1971), 735-744.
doi: 10.1214/aoms/1177693422. |
[9] |
E. Kohlberg, Optimal strategies in repeated games with incomplete information, International Journal of Game Theory, 4 (1975), 7-24.
doi: 10.1007/BF01766399. |
[10] |
E. Lehrer, Approachability in infinitely dimensional spaces, International Journal of Game Theory, 31 (2002), 253-268.
doi: 10.1007/s001820200115. |
[11] |
E. Lehrer, The game of normal numbers, Mathematics of Operations Research, 29 (2004), 259-265.
doi: 10.1287/moor.1030.0087. |
[12] |
S. Mannor and V. Perchet, Approachability, Fast and slow, JMLR Workshop and Conference Proceedings, 30 (2013), 474-488. |
[13] |
M. Maschler, E. Solan and S. Zamir, Game Theory, Cambridge University Press, 2013.
doi: 10.1017/CBO9780511794216. |
[14] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. |
[15] |
D. Rosenberg, E. Solan and N. Vieille, Stochastic games with a single controller and incomplete information, SIAM Journal on Control and Optimization, 43 (2004), 86-110.
doi: 10.1137/S0363012902407107. |
[16] |
S. Sorin, Zero-sum repeated games: recent advances and new links with differential games, Dynamic Games and Applications, 1 (2011), 172-207.
doi: 10.1007/s13235-010-0006-z. |
[17] |
X. Spinat, A necessary and sufficient condition for approachability, Mathematics of Operations Research, 27 (2002), 31-44.
doi: 10.1287/moor.27.1.31.333. |
show all references
References:
[1] |
R. J. Aumann and M. Maschler, Repeated games of incomplete information: A survey of recent results, in Reports of the U.S. Arms Control and Disarmament Agency ST-116, Washingtom, D.C., Chapter III, 1967, 287-403. |
[2] |
R. J. Aumann and M. Maschler, Repeated Games with Incomplete Information, MIT Press, Cambridge, 1995. |
[3] |
D. Blackwell, An analog of the minmax theorem for vector payoffs, Pacific Journal of Mathematics, 6 (1956), 1-8.
doi: 10.2140/pjm.1956.6.1. |
[4] |
N. Cesa-Bianchi and G. Lugosi, Prediction, Learning and Games, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511546921. |
[5] |
D. P. Foster and R. V. Vohra, Calibrated learning and correlated equilibrium, Games Economics Behavior, 21 (1997), 40-55.
doi: 10.1006/game.1997.0595. |
[6] |
M. A. Goberna, E. Gonzalez, J. E. Martinez-Legaz and M. I. Todorov, Motzkin decomposition of closed convex sets, Journal of Mathematical Analysis and Applications, 364 (2010), 209-221.
doi: 10.1016/j.jmaa.2009.10.015. |
[7] |
S. Hart and A. Mas-Colell, A simple adaptive procedure leading to correlated equilibrium, Econometrica, 68 (2000), 1127-1150.
doi: 10.1111/1468-0262.00153. |
[8] |
T. F. Hou, Approachability in a two-person game, The Annals of Mathematical Statistics, 42 (1971), 735-744.
doi: 10.1214/aoms/1177693422. |
[9] |
E. Kohlberg, Optimal strategies in repeated games with incomplete information, International Journal of Game Theory, 4 (1975), 7-24.
doi: 10.1007/BF01766399. |
[10] |
E. Lehrer, Approachability in infinitely dimensional spaces, International Journal of Game Theory, 31 (2002), 253-268.
doi: 10.1007/s001820200115. |
[11] |
E. Lehrer, The game of normal numbers, Mathematics of Operations Research, 29 (2004), 259-265.
doi: 10.1287/moor.1030.0087. |
[12] |
S. Mannor and V. Perchet, Approachability, Fast and slow, JMLR Workshop and Conference Proceedings, 30 (2013), 474-488. |
[13] |
M. Maschler, E. Solan and S. Zamir, Game Theory, Cambridge University Press, 2013.
doi: 10.1017/CBO9780511794216. |
[14] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. |
[15] |
D. Rosenberg, E. Solan and N. Vieille, Stochastic games with a single controller and incomplete information, SIAM Journal on Control and Optimization, 43 (2004), 86-110.
doi: 10.1137/S0363012902407107. |
[16] |
S. Sorin, Zero-sum repeated games: recent advances and new links with differential games, Dynamic Games and Applications, 1 (2011), 172-207.
doi: 10.1007/s13235-010-0006-z. |
[17] |
X. Spinat, A necessary and sufficient condition for approachability, Mathematics of Operations Research, 27 (2002), 31-44.
doi: 10.1287/moor.27.1.31.333. |
[1] |
Dario Bauso, Thomas W. L. Norman. Approachability in population games. Journal of Dynamics and Games, 2020, 7 (4) : 269-289. doi: 10.3934/jdg.2020019 |
[2] |
Vianney Perchet. Approachability, regret and calibration: Implications and equivalences. Journal of Dynamics and Games, 2014, 1 (2) : 181-254. doi: 10.3934/jdg.2014.1.181 |
[3] |
Shie Mannor, Vianney Perchet, Gilles Stoltz. A primal condition for approachability with partial monitoring. Journal of Dynamics and Games, 2014, 1 (3) : 447-469. doi: 10.3934/jdg.2014.1.447 |
[4] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[5] |
Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics and Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555 |
[6] |
Beatris Adriana Escobedo-Trujillo, Alejandro Alaffita-Hernández, Raquiel López-Martínez. Constrained stochastic differential games with additive structure: Average and discount payoffs. Journal of Dynamics and Games, 2018, 5 (2) : 109-141. doi: 10.3934/jdg.2018008 |
[7] |
Christian Hofer, Georg Jäger, Manfred Füllsack. Critical transitions and Early Warning Signals in repeated Cooperation Games. Journal of Dynamics and Games, 2018, 5 (3) : 223-230. doi: 10.3934/jdg.2018014 |
[8] |
Mathias Staudigl, Jan-Henrik Steg. On repeated games with imperfect public monitoring: From discrete to continuous time. Journal of Dynamics and Games, 2017, 4 (1) : 1-23. doi: 10.3934/jdg.2017001 |
[9] |
Miquel Oliu-Barton. Asymptotically optimal strategies in repeated games with incomplete information and vanishing weights. Journal of Dynamics and Games, 2019, 6 (4) : 259-275. doi: 10.3934/jdg.2019018 |
[10] |
Matthew Bourque, T. E. S. Raghavan. Policy improvement for perfect information additive reward and additive transition stochastic games with discounted and average payoffs. Journal of Dynamics and Games, 2014, 1 (3) : 347-361. doi: 10.3934/jdg.2014.1.347 |
[11] |
Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517 |
[12] |
Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics and Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411 |
[13] |
Aradhana Narang, A. J. Shaiju. Neighborhood strong superiority and evolutionary stability of polymorphic profiles in asymmetric games. Journal of Dynamics and Games, 2022 doi: 10.3934/jdg.2022012 |
[14] |
Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial and Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563 |
[15] |
Nguyen Ba Minh, Pham Huu Sach. Strong vector equilibrium problems with LSC approximate solution mappings. Journal of Industrial and Management Optimization, 2020, 16 (2) : 511-529. doi: 10.3934/jimo.2018165 |
[16] |
Kenji Kimura, Jen-Chih Yao. Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 167-181. doi: 10.3934/jimo.2008.4.167 |
[17] |
Lam Quoc Anh, Nguyen Van Hung. Gap functions and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems. Journal of Industrial and Management Optimization, 2018, 14 (1) : 65-79. doi: 10.3934/jimo.2017037 |
[18] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[19] |
Yan Liu, Minjia Shi, Hai Q. Dinh, Songsak Sriboonchitta. Repeated-root constacyclic codes of length $ 3\ell^mp^s $. Advances in Mathematics of Communications, 2020, 14 (2) : 359-378. doi: 10.3934/amc.2020025 |
[20] |
Tingting Wu, Shixin Zhu, Li Liu, Lanqiang Li. Repeated-root constacyclic codes of length 6lmpn. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021044 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]