\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Game dynamics and Nash equilibria

Abstract Related Papers Cited by
  • There are games with a unique Nash equilibrium but such that, for almost all initial conditions, all strategies in the support of this equilibrium are eliminated by the replicator dynamics and the best-reply dynamics.
    Mathematics Subject Classification: Primary: 91A22; Secondary: 34A34, 34A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation, Games and Economic Behavior, 11 (1995), 279-303.doi: 10.1006/game.1995.1052.

    [2]

    I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.doi: 10.2307/2938230.

    [3]

    S. Hart, Adaptive heuristics, Econometrica, 73 (2005), 1401-1430.doi: 10.1111/j.1468-0262.2005.00625.x.

    [4]

    J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics, Theoretical Economics, 6 (2011), 341-377.doi: 10.3982/TE771.

    [5]

    J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.doi: 10.1017/CBO9781139173179.

    [6]

    J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics, Mathematics of Operations Research, 34 (2009), 263-269.doi: 10.1287/moor.1080.0359.

    [7]

    M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games, Mathematics of Operations Research, 6 (1981), 530-550.doi: 10.1287/moor.6.4.530.

    [8]

    A. Matsui, Best-response dynamics and socially stable strategies, Journal of Economic Theory, 57 (1992), 343-362.doi: 10.1016/0022-0531(92)90040-O.

    [9]

    D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition, SFB 504 Discussion Paper 97-12, Universität Mannheim, 1997.

    [10]

    W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, MA, 2010.

    [11]

    P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145-156.doi: 10.1016/0025-5564(78)90077-9.

    [12]

    E. van Damme, Stability and Perfection of Nash Equilibria, Second edition, Springer-Verlag, New-York, 1991.doi: 10.1007/978-3-642-58242-4.

    [13]

    Y. Viossat, The replicator dynamics does not lead to correlated equilibria, Games and Economic Behavior, 59 (2007), 397-407.doi: 10.1016/j.geb.2006.09.001.

    [14]

    Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria, Mathematical Social Sciences, 56 (2008), 27-43.doi: 10.1016/j.mathsocsci.2007.12.001.

    [15]

    Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint, arXiv:1110.6246v1.

    [16]

    J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995.

    [17]

    E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), Lecture Notes in Mathematics, 819, Springer, New York, 1980, 471-497.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return