July  2014, 1(3): 537-553. doi: 10.3934/jdg.2014.1.537

Game dynamics and Nash equilibria

1. 

CEREMADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, F-75775 Paris, France

Received  November 2012 Revised  July 2013 Published  July 2014

There are games with a unique Nash equilibrium but such that, for almost all initial conditions, all strategies in the support of this equilibrium are eliminated by the replicator dynamics and the best-reply dynamics.
Citation: Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537
References:
[1]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation,, Games and Economic Behavior, 11 (1995), 279.  doi: 10.1006/game.1995.1052.  Google Scholar

[2]

I. Gilboa and A. Matsui, Social stability and equilibrium,, Econometrica, 59 (1991), 859.  doi: 10.2307/2938230.  Google Scholar

[3]

S. Hart, Adaptive heuristics,, Econometrica, 73 (2005), 1401.  doi: 10.1111/j.1468-0262.2005.00625.x.  Google Scholar

[4]

J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics,, Theoretical Economics, 6 (2011), 341.  doi: 10.3982/TE771.  Google Scholar

[5]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998).  doi: 10.1017/CBO9781139173179.  Google Scholar

[6]

J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics,, Mathematics of Operations Research, 34 (2009), 263.  doi: 10.1287/moor.1080.0359.  Google Scholar

[7]

M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games,, Mathematics of Operations Research, 6 (1981), 530.  doi: 10.1287/moor.6.4.530.  Google Scholar

[8]

A. Matsui, Best-response dynamics and socially stable strategies,, Journal of Economic Theory, 57 (1992), 343.  doi: 10.1016/0022-0531(92)90040-O.  Google Scholar

[9]

D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition,, SFB 504 Discussion Paper 97-12, (1997), 97.   Google Scholar

[10]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[11]

P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[12]

E. van Damme, Stability and Perfection of Nash Equilibria,, Second edition, (1991).  doi: 10.1007/978-3-642-58242-4.  Google Scholar

[13]

Y. Viossat, The replicator dynamics does not lead to correlated equilibria,, Games and Economic Behavior, 59 (2007), 397.  doi: 10.1016/j.geb.2006.09.001.  Google Scholar

[14]

Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria,, Mathematical Social Sciences, 56 (2008), 27.  doi: 10.1016/j.mathsocsci.2007.12.001.  Google Scholar

[15]

Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint,, , ().   Google Scholar

[16]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

[17]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), (1980), 471.   Google Scholar

show all references

References:
[1]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation,, Games and Economic Behavior, 11 (1995), 279.  doi: 10.1006/game.1995.1052.  Google Scholar

[2]

I. Gilboa and A. Matsui, Social stability and equilibrium,, Econometrica, 59 (1991), 859.  doi: 10.2307/2938230.  Google Scholar

[3]

S. Hart, Adaptive heuristics,, Econometrica, 73 (2005), 1401.  doi: 10.1111/j.1468-0262.2005.00625.x.  Google Scholar

[4]

J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics,, Theoretical Economics, 6 (2011), 341.  doi: 10.3982/TE771.  Google Scholar

[5]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998).  doi: 10.1017/CBO9781139173179.  Google Scholar

[6]

J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics,, Mathematics of Operations Research, 34 (2009), 263.  doi: 10.1287/moor.1080.0359.  Google Scholar

[7]

M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games,, Mathematics of Operations Research, 6 (1981), 530.  doi: 10.1287/moor.6.4.530.  Google Scholar

[8]

A. Matsui, Best-response dynamics and socially stable strategies,, Journal of Economic Theory, 57 (1992), 343.  doi: 10.1016/0022-0531(92)90040-O.  Google Scholar

[9]

D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition,, SFB 504 Discussion Paper 97-12, (1997), 97.   Google Scholar

[10]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[11]

P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[12]

E. van Damme, Stability and Perfection of Nash Equilibria,, Second edition, (1991).  doi: 10.1007/978-3-642-58242-4.  Google Scholar

[13]

Y. Viossat, The replicator dynamics does not lead to correlated equilibria,, Games and Economic Behavior, 59 (2007), 397.  doi: 10.1016/j.geb.2006.09.001.  Google Scholar

[14]

Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria,, Mathematical Social Sciences, 56 (2008), 27.  doi: 10.1016/j.mathsocsci.2007.12.001.  Google Scholar

[15]

Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint,, , ().   Google Scholar

[16]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

[17]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), (1980), 471.   Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[6]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[9]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]