Advanced Search
Article Contents
Article Contents

Game dynamics and Nash equilibria

Abstract Related Papers Cited by
  • There are games with a unique Nash equilibrium but such that, for almost all initial conditions, all strategies in the support of this equilibrium are eliminated by the replicator dynamics and the best-reply dynamics.
    Mathematics Subject Classification: Primary: 91A22; Secondary: 34A34, 34A60.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation, Games and Economic Behavior, 11 (1995), 279-303.doi: 10.1006/game.1995.1052.


    I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.doi: 10.2307/2938230.


    S. Hart, Adaptive heuristics, Econometrica, 73 (2005), 1401-1430.doi: 10.1111/j.1468-0262.2005.00625.x.


    J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics, Theoretical Economics, 6 (2011), 341-377.doi: 10.3982/TE771.


    J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.doi: 10.1017/CBO9781139173179.


    J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics, Mathematics of Operations Research, 34 (2009), 263-269.doi: 10.1287/moor.1080.0359.


    M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games, Mathematics of Operations Research, 6 (1981), 530-550.doi: 10.1287/moor.6.4.530.


    A. Matsui, Best-response dynamics and socially stable strategies, Journal of Economic Theory, 57 (1992), 343-362.doi: 10.1016/0022-0531(92)90040-O.


    D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition, SFB 504 Discussion Paper 97-12, Universität Mannheim, 1997.


    W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, MA, 2010.


    P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145-156.doi: 10.1016/0025-5564(78)90077-9.


    E. van Damme, Stability and Perfection of Nash Equilibria, Second edition, Springer-Verlag, New-York, 1991.doi: 10.1007/978-3-642-58242-4.


    Y. Viossat, The replicator dynamics does not lead to correlated equilibria, Games and Economic Behavior, 59 (2007), 397-407.doi: 10.1016/j.geb.2006.09.001.


    Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria, Mathematical Social Sciences, 56 (2008), 27-43.doi: 10.1016/j.mathsocsci.2007.12.001.


    Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint, arXiv:1110.6246v1.


    J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995.


    E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), Lecture Notes in Mathematics, 819, Springer, New York, 1980, 471-497.

  • 加载中

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint