October  2014, 1(4): 555-578. doi: 10.3934/jdg.2014.1.555

Nonzero-sum stochastic differential games with additive structure and average payoffs

1. 

Engineering Faculty, Universidad Veracruzana, Coatzacoalcos, Ver. 96538, Mexico

2. 

Faculty of Actuarial Sciences, Universidad Anáhuac, Av. Universidad Anáhuac 46. Col. Lomas Anáhuac, Huixquilucan, Edo. de México, Mexico

Received  June 2014 Revised  September 2014 Published  November 2014

This paper deals with nonzero-sum stochastic differential games with an additive structure and long-run average payoffs. Our main objective is to give conditions for the existence of Nash equilibria in the set of relaxed stationary strategies. Such conditions also ensure the existence of a Nash equilibrium within the set of stationary Markov (deterministic) strategies, and that the values of the average payoffs for these equilibria coincide almost everywhere with respect to Lebesgue's measure. This fact generalizes the results in the controlled (single player game) case found by Raghavan [47] and Rosenblueth [48]. We use relaxation theory and standard dynamic programming techniques to achieve our goals. We illustrate our results with an example motivated by a manufacturing system.
Citation: Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics & Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555
References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

R. Akella and P. Kumar, Optimal control of production rate in a failure prone manufacturing system,, IEEE Trans. Automatic Control, 31 (1986), 116.  doi: 10.1109/TAC.1986.1104206.  Google Scholar

[3]

A. Arapostathis and V. Borkar, Uniform recurrence properties of controlled diffusions and applications to optimal control,, SIAM J. Control Optim, 48 (2010), 4181.  doi: 10.1137/090762464.  Google Scholar

[4]

E. Balder, Lectures on Young Measures,, Cahier de Mathématiques de la Décision, (1995).   Google Scholar

[5]

M. Bardi, Explicit solutions of some linear-quadratic mean field games,, Netw. Heterog. Media., 7 (2012), 243.  doi: 10.3934/nhm.2012.7.243.  Google Scholar

[6]

M. Bardi and F. Priuli, LQG Mean-Field Games with ergodic cost,, Proc. 52nd IEEE Conference on Decision and Control, (2013), 2493.  doi: 10.1109/CDC.2013.6760255.  Google Scholar

[7]

A. Bhatt and R. Karandikar, Invariant measures and evolution equations for Markov processes,, Ann. Probab., 21 (1993), 2246.  doi: 10.1214/aop/1176989019.  Google Scholar

[8]

P. Billingsley, Probability and Measure,, $3^{rd}$ edition, (1995).   Google Scholar

[9]

V. Bogachev, N. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. PartialDifferential Equations, 26 (2001), 2037.  doi: 10.1081/PDE-100107815.  Google Scholar

[10]

V. Bogachev, N. Krylov and M. Röckner, Regularity and global bounds for the densities of invariant measures of diffusion processes,, Dokl. Akad. Nauk, 405 (2005), 583.   Google Scholar

[11]

V. Bogachev, M. Röckner and V. Stannat, Uniqueness of solutions of elliptic equations and uniqueness pf invariant measures of diffusions processes,, Sb. Math., 193 (2002), 945.  doi: 10.1070/SM2002v193n07ABEH000665.  Google Scholar

[12]

V. Borkar, A topology for Markov controls,, Appl. Math. Optim., 20 (1989), 55.  doi: 10.1007/BF01447645.  Google Scholar

[13]

V. Borkar and M. Ghosh, Stochastic differential games: Occupation measure based approach,, J. Optim. Theory Appl., 73 (1992), 359.  doi: 10.1007/BF00940187.  Google Scholar

[14]

R. Buckdahn, P. Cardaliaguet and C. Rainer, Nash equilibrium payoffs for nonzero-sum stochastic diferential games,, SIAM J. Control Optim., 43 (2004), 624.  doi: 10.1137/S0363012902411556.  Google Scholar

[15]

A. Calderón and J. Rosenblueth, Minimizing Approximate Original Solutions for Commensurate Delayed Controls,, Appl. Math. Lett., 7 (1994), 5.  doi: 10.1016/0893-9659(94)90063-9.  Google Scholar

[16]

R. Durrett, Stochastic Calculus: A Practical Introduction,, CRC Press, (1996).   Google Scholar

[17]

A. Dvoretzky, A. Wald and J. Wolfowitz, Elimination of randomization in certain statistical decision procedure and zero-sum two person games,, Ann. Math. Statist., 22 (1951), 1.  doi: 10.1214/aoms/1177729689.  Google Scholar

[18]

B. Escobedo-Trujillo, J. López-Barrientos and O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum stochastic differential games,, J. Optim. Theory Appl., 153 (2012), 662.  doi: 10.1007/s10957-011-9974-4.  Google Scholar

[19]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. N.A.S.U.S.A., 38 (1952), 121.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[20]

K. Fan, Minimax theorems,, Proc. N.A.S.U.S.A., 39 (1953), 32.  doi: 10.1073/pnas.39.1.42.  Google Scholar

[21]

G. Folland, Real Analysis. Modern Techniques and Their Applications,, $2^{nd}$ edition, (1999).   Google Scholar

[22]

A. Friedman, Stochastic Differential Equations and Applications,, Vol. 1, (1975).   Google Scholar

[23]

M. Ghosh, A. Arapostathis and S. Marcus, Ergodic control of switching diffusions,, SIAM J. Control Optim., 35 (1997), 1962.  doi: 10.1137/S0363012996299302.  Google Scholar

[24]

M. Ghosh and A. Bagchi, Stochastic game with average payoff criterion,, Appl. Math. Optim., 38 (1998), 283.  doi: 10.1007/s002459900092.  Google Scholar

[25]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprinted version, (1998).   Google Scholar

[26]

P. Glynn and S. Meyn, A Liapounov bound for solutions of the Poisson equation,, Ann. Prob., 24 (1996), 916.  doi: 10.1214/aop/1039639370.  Google Scholar

[27]

J. González-Hernández and O. Hernández-Lerma, Extreme points of sets of randomized strategies in constrained optimization and control problems,, SIAM J. Optim., 15 (2005), 1085.  doi: 10.1137/040605345.  Google Scholar

[28]

H. Hernández-Hernández, Existence of nash equilibria in discounted nonzero-sum stochastic games with additive structure,, Morfismos, 6 (2002), 43.   Google Scholar

[29]

O. Hernández-Lerma and J. Lasserre, Discrete-Time Markov Control Processes: Basic Optimality Criteria,, Springer, (1996).  doi: 10.1007/978-1-4612-0729-0.  Google Scholar

[30]

O. Hernández-Lerma and J. Lasserre, Further topics on Discrete-Time Markov Control Processes,, Springer, (1999).  doi: 10.1007/978-1-4612-0561-6.  Google Scholar

[31]

H. Jasso-Fuentes and O. Hernández-Lerma, Characterizations of overtaking optimality for controlled diffusion processes,, Appl. Math. Optim., 57 (2008), 349.  doi: 10.1007/s00245-007-9025-6.  Google Scholar

[32]

F. Klebaner, Introduction to Stochastic Calculus with Applications,, $2^{nd}$ edition, (2005).  doi: 10.1142/p386.  Google Scholar

[33]

A. Knapp, Advanced Real Analysis,, $2^{nd}$ edition, (2005).   Google Scholar

[34]

A. Kolmogorov and S. Fomin, Elements of the Theory of Functions and Functional Analysis,, Dover Publications, (1999).   Google Scholar

[35]

N. Krylov, Controlled diffusion processes. Applications of Mathematics,, Springer-Verlag, (1980).   Google Scholar

[36]

H. Kushner, Numerical approximations for nonzero-sum stochastic differential games,, SIAM J.Control Optim., 46 (2007), 1942.  doi: 10.1137/050647931.  Google Scholar

[37]

H. Küenle, Equilibrium strategies in stochastic games with additive cost and transition structure,, Internat. Game Theory Rev., 1 (1999), 131.  doi: 10.1142/S0219198999000098.  Google Scholar

[38]

S. Meyn and R. Tweedie, Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time precesses,, Adv. Appl. Prob., 25 (1993), 518.  doi: 10.2307/1427522.  Google Scholar

[39]

H. Morimoto and M. Ohashi, On linear stochastic differential games with average cost criterions,, J. Optimization Theory and Applications, 64 (1990), 127.  doi: 10.1007/BF00940027.  Google Scholar

[40]

J. Munkres, Topology,, $2^{nd}$ edition, (2000).   Google Scholar

[41]

A. Nowak, Stationary equilibria for nonzero-sum average payoff ergodic stochastic games with general state space,, Advances in Dynamic Games and Applications (T. Basar and A. Haurie, 1 (1994), 231.   Google Scholar

[42]

A. Nowak, Remark on sensitive equilibria in stochastic games with additive reward and transition structure,, Math. Meth. Oper. Res., 64 (2006), 481.  doi: 10.1007/s00186-006-0090-4.  Google Scholar

[43]

P. Pedregal, Optimization, relaxation and Young measures,, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 27.  doi: 10.1090/S0273-0979-99-00774-0.  Google Scholar

[44]

B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, $4^{th}$ edition, (1995).  doi: 10.1007/978-3-662-03185-8.  Google Scholar

[45]

K. Parthasarathy and T. Steerneman, A tool in establishing total variation convergence,, Proceedings of the American Mathematical Society, 95 (1985), 626.  doi: 10.1090/S0002-9939-1985-0810175-X.  Google Scholar

[46]

T. Prieto-Rumeau and O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum continuous-time Markov games,, Math. Meth. Oper. Res., 61 (2005), 437.  doi: 10.1007/s001860400392.  Google Scholar

[47]

T. Raghavan, S. Tijs and O. Vrieze, On stochastic games with additive reward and transition structure,, J. Optim. Theory Appl., 47 (1985), 451.  doi: 10.1007/BF00942191.  Google Scholar

[48]

J. Rosenblueth, Proper relaxation of optimal control problem,, J. Optim. Theory Appl., 74 (1992), 509.  doi: 10.1007/BF00940324.  Google Scholar

[49]

N. Saldi, T. Linder and S. Yüksel, Asymptotic optimality of quantized control in Markov decision processes., Submitted to IEEE Conference on Decision and Control., ().   Google Scholar

[50]

M. Schäl, Conditions for optimality and for the limit of $n-$stage optimal policies to be optimal,, Z. Wahrs. Verw. Gerb., 32 (1975), 179.  doi: 10.1007/BF00532612.  Google Scholar

[51]

L. Young, Lectures on the Calculus of Variations and Optimal Control Theory,, W. B. Saunders, (1969).   Google Scholar

[52]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[53]

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

R. Akella and P. Kumar, Optimal control of production rate in a failure prone manufacturing system,, IEEE Trans. Automatic Control, 31 (1986), 116.  doi: 10.1109/TAC.1986.1104206.  Google Scholar

[3]

A. Arapostathis and V. Borkar, Uniform recurrence properties of controlled diffusions and applications to optimal control,, SIAM J. Control Optim, 48 (2010), 4181.  doi: 10.1137/090762464.  Google Scholar

[4]

E. Balder, Lectures on Young Measures,, Cahier de Mathématiques de la Décision, (1995).   Google Scholar

[5]

M. Bardi, Explicit solutions of some linear-quadratic mean field games,, Netw. Heterog. Media., 7 (2012), 243.  doi: 10.3934/nhm.2012.7.243.  Google Scholar

[6]

M. Bardi and F. Priuli, LQG Mean-Field Games with ergodic cost,, Proc. 52nd IEEE Conference on Decision and Control, (2013), 2493.  doi: 10.1109/CDC.2013.6760255.  Google Scholar

[7]

A. Bhatt and R. Karandikar, Invariant measures and evolution equations for Markov processes,, Ann. Probab., 21 (1993), 2246.  doi: 10.1214/aop/1176989019.  Google Scholar

[8]

P. Billingsley, Probability and Measure,, $3^{rd}$ edition, (1995).   Google Scholar

[9]

V. Bogachev, N. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,, Comm. PartialDifferential Equations, 26 (2001), 2037.  doi: 10.1081/PDE-100107815.  Google Scholar

[10]

V. Bogachev, N. Krylov and M. Röckner, Regularity and global bounds for the densities of invariant measures of diffusion processes,, Dokl. Akad. Nauk, 405 (2005), 583.   Google Scholar

[11]

V. Bogachev, M. Röckner and V. Stannat, Uniqueness of solutions of elliptic equations and uniqueness pf invariant measures of diffusions processes,, Sb. Math., 193 (2002), 945.  doi: 10.1070/SM2002v193n07ABEH000665.  Google Scholar

[12]

V. Borkar, A topology for Markov controls,, Appl. Math. Optim., 20 (1989), 55.  doi: 10.1007/BF01447645.  Google Scholar

[13]

V. Borkar and M. Ghosh, Stochastic differential games: Occupation measure based approach,, J. Optim. Theory Appl., 73 (1992), 359.  doi: 10.1007/BF00940187.  Google Scholar

[14]

R. Buckdahn, P. Cardaliaguet and C. Rainer, Nash equilibrium payoffs for nonzero-sum stochastic diferential games,, SIAM J. Control Optim., 43 (2004), 624.  doi: 10.1137/S0363012902411556.  Google Scholar

[15]

A. Calderón and J. Rosenblueth, Minimizing Approximate Original Solutions for Commensurate Delayed Controls,, Appl. Math. Lett., 7 (1994), 5.  doi: 10.1016/0893-9659(94)90063-9.  Google Scholar

[16]

R. Durrett, Stochastic Calculus: A Practical Introduction,, CRC Press, (1996).   Google Scholar

[17]

A. Dvoretzky, A. Wald and J. Wolfowitz, Elimination of randomization in certain statistical decision procedure and zero-sum two person games,, Ann. Math. Statist., 22 (1951), 1.  doi: 10.1214/aoms/1177729689.  Google Scholar

[18]

B. Escobedo-Trujillo, J. López-Barrientos and O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum stochastic differential games,, J. Optim. Theory Appl., 153 (2012), 662.  doi: 10.1007/s10957-011-9974-4.  Google Scholar

[19]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. N.A.S.U.S.A., 38 (1952), 121.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[20]

K. Fan, Minimax theorems,, Proc. N.A.S.U.S.A., 39 (1953), 32.  doi: 10.1073/pnas.39.1.42.  Google Scholar

[21]

G. Folland, Real Analysis. Modern Techniques and Their Applications,, $2^{nd}$ edition, (1999).   Google Scholar

[22]

A. Friedman, Stochastic Differential Equations and Applications,, Vol. 1, (1975).   Google Scholar

[23]

M. Ghosh, A. Arapostathis and S. Marcus, Ergodic control of switching diffusions,, SIAM J. Control Optim., 35 (1997), 1962.  doi: 10.1137/S0363012996299302.  Google Scholar

[24]

M. Ghosh and A. Bagchi, Stochastic game with average payoff criterion,, Appl. Math. Optim., 38 (1998), 283.  doi: 10.1007/s002459900092.  Google Scholar

[25]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprinted version, (1998).   Google Scholar

[26]

P. Glynn and S. Meyn, A Liapounov bound for solutions of the Poisson equation,, Ann. Prob., 24 (1996), 916.  doi: 10.1214/aop/1039639370.  Google Scholar

[27]

J. González-Hernández and O. Hernández-Lerma, Extreme points of sets of randomized strategies in constrained optimization and control problems,, SIAM J. Optim., 15 (2005), 1085.  doi: 10.1137/040605345.  Google Scholar

[28]

H. Hernández-Hernández, Existence of nash equilibria in discounted nonzero-sum stochastic games with additive structure,, Morfismos, 6 (2002), 43.   Google Scholar

[29]

O. Hernández-Lerma and J. Lasserre, Discrete-Time Markov Control Processes: Basic Optimality Criteria,, Springer, (1996).  doi: 10.1007/978-1-4612-0729-0.  Google Scholar

[30]

O. Hernández-Lerma and J. Lasserre, Further topics on Discrete-Time Markov Control Processes,, Springer, (1999).  doi: 10.1007/978-1-4612-0561-6.  Google Scholar

[31]

H. Jasso-Fuentes and O. Hernández-Lerma, Characterizations of overtaking optimality for controlled diffusion processes,, Appl. Math. Optim., 57 (2008), 349.  doi: 10.1007/s00245-007-9025-6.  Google Scholar

[32]

F. Klebaner, Introduction to Stochastic Calculus with Applications,, $2^{nd}$ edition, (2005).  doi: 10.1142/p386.  Google Scholar

[33]

A. Knapp, Advanced Real Analysis,, $2^{nd}$ edition, (2005).   Google Scholar

[34]

A. Kolmogorov and S. Fomin, Elements of the Theory of Functions and Functional Analysis,, Dover Publications, (1999).   Google Scholar

[35]

N. Krylov, Controlled diffusion processes. Applications of Mathematics,, Springer-Verlag, (1980).   Google Scholar

[36]

H. Kushner, Numerical approximations for nonzero-sum stochastic differential games,, SIAM J.Control Optim., 46 (2007), 1942.  doi: 10.1137/050647931.  Google Scholar

[37]

H. Küenle, Equilibrium strategies in stochastic games with additive cost and transition structure,, Internat. Game Theory Rev., 1 (1999), 131.  doi: 10.1142/S0219198999000098.  Google Scholar

[38]

S. Meyn and R. Tweedie, Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time precesses,, Adv. Appl. Prob., 25 (1993), 518.  doi: 10.2307/1427522.  Google Scholar

[39]

H. Morimoto and M. Ohashi, On linear stochastic differential games with average cost criterions,, J. Optimization Theory and Applications, 64 (1990), 127.  doi: 10.1007/BF00940027.  Google Scholar

[40]

J. Munkres, Topology,, $2^{nd}$ edition, (2000).   Google Scholar

[41]

A. Nowak, Stationary equilibria for nonzero-sum average payoff ergodic stochastic games with general state space,, Advances in Dynamic Games and Applications (T. Basar and A. Haurie, 1 (1994), 231.   Google Scholar

[42]

A. Nowak, Remark on sensitive equilibria in stochastic games with additive reward and transition structure,, Math. Meth. Oper. Res., 64 (2006), 481.  doi: 10.1007/s00186-006-0090-4.  Google Scholar

[43]

P. Pedregal, Optimization, relaxation and Young measures,, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 27.  doi: 10.1090/S0273-0979-99-00774-0.  Google Scholar

[44]

B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, $4^{th}$ edition, (1995).  doi: 10.1007/978-3-662-03185-8.  Google Scholar

[45]

K. Parthasarathy and T. Steerneman, A tool in establishing total variation convergence,, Proceedings of the American Mathematical Society, 95 (1985), 626.  doi: 10.1090/S0002-9939-1985-0810175-X.  Google Scholar

[46]

T. Prieto-Rumeau and O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum continuous-time Markov games,, Math. Meth. Oper. Res., 61 (2005), 437.  doi: 10.1007/s001860400392.  Google Scholar

[47]

T. Raghavan, S. Tijs and O. Vrieze, On stochastic games with additive reward and transition structure,, J. Optim. Theory Appl., 47 (1985), 451.  doi: 10.1007/BF00942191.  Google Scholar

[48]

J. Rosenblueth, Proper relaxation of optimal control problem,, J. Optim. Theory Appl., 74 (1992), 509.  doi: 10.1007/BF00940324.  Google Scholar

[49]

N. Saldi, T. Linder and S. Yüksel, Asymptotic optimality of quantized control in Markov decision processes., Submitted to IEEE Conference on Decision and Control., ().   Google Scholar

[50]

M. Schäl, Conditions for optimality and for the limit of $n-$stage optimal policies to be optimal,, Z. Wahrs. Verw. Gerb., 32 (1975), 179.  doi: 10.1007/BF00532612.  Google Scholar

[51]

L. Young, Lectures on the Calculus of Variations and Optimal Control Theory,, W. B. Saunders, (1969).   Google Scholar

[52]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).   Google Scholar

[53]

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[1]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[17]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (4)

[Back to Top]