January  2014, 1(1): 57-78. doi: 10.3934/jdg.2014.1.57

On the Euler equation approach to discrete--time nonstationary optimal control problems

1. 

Departamento de Matemáticas, Instituto Tecnológico Autónomo de México (ITAM), Río Hondo 1, México D.F. 01000, Mexico

2. 

Mathematics Department, CINVESTAV-IPN, A. Postal 14-740, México D.F. 07000, Mexico

Received  April 2012 Revised  March 2013 Published  June 2013

We are concerned with deterministic and stochastic nonstationary discrete--time optimal control problems in infinite horizon. We show, using Gâteaux differentials, that the so--called Euler equation and a transversality condition are necessary conditions for optimality. In particular, the transversality condition is obtained in a more general form and under milder hypotheses than in previous works. Sufficient conditions are also provided. We also find closed--form solutions to several (discounted) stationary and nonstationary control problems.
Citation: David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57
References:
[1]

D. Acemoglu, "Introduction to Modern Economic Growth,", Princeton University Press, (2009).   Google Scholar

[2]

J. Adda and R. Cooper, "Dynamic Economics. Quantitative Methods and Applications,", MIT Press, (2003).   Google Scholar

[3]

V. I. Arkin and I. V. Evstigneev, "Stochastic Models of Control and Economic Dynamics,", Academic Press, (1987).   Google Scholar

[4]

Y. Bar-Ness, The discrete Euler equation on the normed linear space $l_n^1$,, Int. J. Control, 21 (1975), 625.  doi: 10.1080/00207177508922017.  Google Scholar

[5]

W. A. Brock and L. Mirman, Optimal economic growth and uncertainty: The discounted case,, J. Econ. Theory, 4 (1972), 479.  doi: 10.1016/0022-0531(72)90135-4.  Google Scholar

[6]

J. A. Cadzow, Discrete calculus of variations,, Int. J. Control, 11 (1970), 393.  doi: 10.1080/00207177008905922.  Google Scholar

[7]

G. C. Chow, "Dynamic Economics: Optimization by the Lagrange Method,", Oxford University Press, (1997).   Google Scholar

[8]

I. Ekeland and J. A. Scheinkman, Transversality conditions for some infinite horizon discrete time optimization problems,, Math. Oper. Res., 11 (1986), 216.  doi: 10.1287/moor.11.2.216.  Google Scholar

[9]

S. Elaydi, "An Introduction to Difference Equations,", Third edition, (2005).   Google Scholar

[10]

J. Engwerda, "LQ Dynamic Optimization and Differential Games,", John Wiley & Sons, (2005).   Google Scholar

[11]

S. Flåm and A. Fougères, Infinite horizon programs; Convergence of approximate solutions,, Ann. Oper. Res., 29 (1991), 333.  doi: 10.1007/BF02283604.  Google Scholar

[12]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).   Google Scholar

[13]

X. Guo, A. Hernández-del-Valle and O. Hernández-Lerma, Nonstationary discrete-time deterministic and stochastic control systems: Bounded and unbounded cases,, Systems Control Lett., 60 (2011), 503.  doi: 10.1016/j.sysconle.2011.04.006.  Google Scholar

[14]

O. Hernández-Lerma and J. B. Lasserre, "Discrete-Time Markov Control Processes: Basic Optimality Criteria,", Applications of Mathematics (New York), 30 (1996).   Google Scholar

[15]

T. Kamihigashi, A simple proof of the necessity of the transversality condition,, Econ. Theory, 20 (2002), 427.  doi: 10.1007/s001990100198.  Google Scholar

[16]

T. Kamihigashi, Transversality conditions and dynamic economic behaviour,, in, (2008), 384.  doi: 10.1057/9780230226203.1737.  Google Scholar

[17]

W. G. Kelley and A. C. Peterson, "Difference Equations. An Introduction with Applications,", Academic Press, (1991).   Google Scholar

[18]

C. Le Van and R.-A. Dana, "Dynamic Programming in Economics,", Dynamic Modeling and Econometrics in Economics and Finance, 5 (2003).   Google Scholar

[19]

D. Levhari and L. D. Mirman, The great fish war: An example using dynamic Cournot-Nash solution,, Bell J. Econom., 11 (1980), 322.  doi: 10.2307/3003416.  Google Scholar

[20]

L. Ljungqvist and T. J. Sargent, "Recursive Macroeconomic Theory,", Second edition, (2004).   Google Scholar

[21]

D. G. Luenberger, "Optimization by Vector Space Methods,", John Wiley & Sons, (1969).   Google Scholar

[22]

K. Okuguchi, A dynamic Cournot-Nash equilibrium in fishery: The effects of entry,, Riv. Mat. Sci. Econom. Social., 4 (1981), 59.  doi: 10.1007/BF02123580.  Google Scholar

[23]

W. Rudin, "Principles of Mathematical Analysis,", Third edition, (1976).   Google Scholar

[24]

I. Schochetman and R. L. Smith, Finite dimensional approximation in infinite-dimensional mathematical programming,, Math. Programming, 54 (1992), 307.  doi: 10.1007/BF01586057.  Google Scholar

[25]

N. L. Stokey, R. E. Lucas and E. C. Prescott, Jr., "Recursive Methods in Economic Dynamics,", With the collaboration of Edward C. Prescott, (1989).   Google Scholar

[26]

K. Sydsæter, P. J. Hammond, A. Seierstad and A. Strøm, "Further Mathematics for Economic Analysis,", Second edition, (2008).   Google Scholar

show all references

References:
[1]

D. Acemoglu, "Introduction to Modern Economic Growth,", Princeton University Press, (2009).   Google Scholar

[2]

J. Adda and R. Cooper, "Dynamic Economics. Quantitative Methods and Applications,", MIT Press, (2003).   Google Scholar

[3]

V. I. Arkin and I. V. Evstigneev, "Stochastic Models of Control and Economic Dynamics,", Academic Press, (1987).   Google Scholar

[4]

Y. Bar-Ness, The discrete Euler equation on the normed linear space $l_n^1$,, Int. J. Control, 21 (1975), 625.  doi: 10.1080/00207177508922017.  Google Scholar

[5]

W. A. Brock and L. Mirman, Optimal economic growth and uncertainty: The discounted case,, J. Econ. Theory, 4 (1972), 479.  doi: 10.1016/0022-0531(72)90135-4.  Google Scholar

[6]

J. A. Cadzow, Discrete calculus of variations,, Int. J. Control, 11 (1970), 393.  doi: 10.1080/00207177008905922.  Google Scholar

[7]

G. C. Chow, "Dynamic Economics: Optimization by the Lagrange Method,", Oxford University Press, (1997).   Google Scholar

[8]

I. Ekeland and J. A. Scheinkman, Transversality conditions for some infinite horizon discrete time optimization problems,, Math. Oper. Res., 11 (1986), 216.  doi: 10.1287/moor.11.2.216.  Google Scholar

[9]

S. Elaydi, "An Introduction to Difference Equations,", Third edition, (2005).   Google Scholar

[10]

J. Engwerda, "LQ Dynamic Optimization and Differential Games,", John Wiley & Sons, (2005).   Google Scholar

[11]

S. Flåm and A. Fougères, Infinite horizon programs; Convergence of approximate solutions,, Ann. Oper. Res., 29 (1991), 333.  doi: 10.1007/BF02283604.  Google Scholar

[12]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).   Google Scholar

[13]

X. Guo, A. Hernández-del-Valle and O. Hernández-Lerma, Nonstationary discrete-time deterministic and stochastic control systems: Bounded and unbounded cases,, Systems Control Lett., 60 (2011), 503.  doi: 10.1016/j.sysconle.2011.04.006.  Google Scholar

[14]

O. Hernández-Lerma and J. B. Lasserre, "Discrete-Time Markov Control Processes: Basic Optimality Criteria,", Applications of Mathematics (New York), 30 (1996).   Google Scholar

[15]

T. Kamihigashi, A simple proof of the necessity of the transversality condition,, Econ. Theory, 20 (2002), 427.  doi: 10.1007/s001990100198.  Google Scholar

[16]

T. Kamihigashi, Transversality conditions and dynamic economic behaviour,, in, (2008), 384.  doi: 10.1057/9780230226203.1737.  Google Scholar

[17]

W. G. Kelley and A. C. Peterson, "Difference Equations. An Introduction with Applications,", Academic Press, (1991).   Google Scholar

[18]

C. Le Van and R.-A. Dana, "Dynamic Programming in Economics,", Dynamic Modeling and Econometrics in Economics and Finance, 5 (2003).   Google Scholar

[19]

D. Levhari and L. D. Mirman, The great fish war: An example using dynamic Cournot-Nash solution,, Bell J. Econom., 11 (1980), 322.  doi: 10.2307/3003416.  Google Scholar

[20]

L. Ljungqvist and T. J. Sargent, "Recursive Macroeconomic Theory,", Second edition, (2004).   Google Scholar

[21]

D. G. Luenberger, "Optimization by Vector Space Methods,", John Wiley & Sons, (1969).   Google Scholar

[22]

K. Okuguchi, A dynamic Cournot-Nash equilibrium in fishery: The effects of entry,, Riv. Mat. Sci. Econom. Social., 4 (1981), 59.  doi: 10.1007/BF02123580.  Google Scholar

[23]

W. Rudin, "Principles of Mathematical Analysis,", Third edition, (1976).   Google Scholar

[24]

I. Schochetman and R. L. Smith, Finite dimensional approximation in infinite-dimensional mathematical programming,, Math. Programming, 54 (1992), 307.  doi: 10.1007/BF01586057.  Google Scholar

[25]

N. L. Stokey, R. E. Lucas and E. C. Prescott, Jr., "Recursive Methods in Economic Dynamics,", With the collaboration of Edward C. Prescott, (1989).   Google Scholar

[26]

K. Sydsæter, P. J. Hammond, A. Seierstad and A. Strøm, "Further Mathematics for Economic Analysis,", Second edition, (2008).   Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[8]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[9]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[10]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[13]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

 Impact Factor: 

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (4)

[Back to Top]