October  2014, 1(4): 579-598. doi: 10.3934/jdg.2014.1.579

Investment under uncertainty, competition and regulation

1. 

IMPA, Estrada Dona Castorina, 110, Rio De Janeiro, 22460-320, Brazil

Received  September 2013 Revised  February 2014 Published  November 2014

We investigate a randomization procedure undertaken in real option games which can serve as a basic model of regulation in a duopoly model of preemptive investment. We recall the rigorous framework of M. Grasselli, V. Leclère and M. Ludkovsky (Priority Option: the value of being a leader, International Journal of Theoretical and Applied Finance, 16, 2013), and extend it to a random regulator. This model generalizes and unifies the different competitive frameworks proposed in the literature, and creates a new one similar to a Stackelberg leadership. We fully characterize strategic interactions in the several situations following from the parametrization of the regulator. Finally, we study the effect of the coordination game and uncertainty of outcome when agents are risk-averse, providing new intuitions for the standard case.
Citation: Adrien Nguyen Huu. Investment under uncertainty, competition and regulation. Journal of Dynamics & Games, 2014, 1 (4) : 579-598. doi: 10.3934/jdg.2014.1.579
References:
[1]

A. F. Azevedo and D. A. Paxson, Real options game models: A review,, Real Options 2010, (2010).

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The journal of political economy, 81 (1973), 637. doi: 10.1086/260062.

[3]

A. Bensoussan, J. D. Diltz and S. Hoe, Real options games in complete and incomplete markets with several decision makers,, SIAM Journal on Financial Mathematics, 1 (2010), 666. doi: 10.1137/090768060.

[4]

D. Becherer, Rational hedging and valuation of integrated risks under constant absolute risk aversion,, Insurance: Mathematics and economics, 33 (2003), 1. doi: 10.1016/S0167-6687(03)00140-9.

[5]

B. Chevalier-Roignant, C. M. Flath, A. Huchzermeier and L. Trigeorgis, Strategic investment under uncertainty: A synthesis,, European Journal of Operational Research, 215 (2011), 639. doi: 10.1016/j.ejor.2011.05.038.

[6]

D. Fudenberg and J. Tirole, Preemption and rent equalization in the adoption of new technology,, The Review of Economic Studies, 52 (1985), 383. doi: 10.2307/2297660.

[7]

M. Grasselli, V. Leclere and M. Ludkovski, Priority Option: The Value of Being a Leader,, International Journal of Theoretical and Applied Finance, 16 (2013). doi: 10.1142/S0219024913500040.

[8]

S. R. Grenadier, The strategic exercise of options: Development cascades and overbuilding in real estate markets,, The Journal of Finance, 51 (1996), 1653. doi: 10.2307/2329533.

[9]

S. R. Grenadier, Option exercise games: The intersection of real options and game theory,, Journal of Applied Corporate Finance, 13 (2000), 99. doi: 10.1111/j.1745-6622.2000.tb00057.x.

[10]

C.-f. Huang and L. Lode, Entry and exit: Subgame perfect equilibria in continuous-time stopping games,, working paper, (1991).

[11]

D. Paxson and H. Pinto, Rivalry under price and quantity uncertainty,, Review of Financial Economics, 14 (2005), 209. doi: 10.1016/j.rfe.2005.04.002.

[12]

F. Smets, Essays on Foreign Direct Investment,, Ph.D. Thesis, (1993).

[13]

A. Tsekrekos, The effect of first-mover's advantages on the strategic exercise of real option,, in Real R&D Options (eds. D. Paxson), (2003), 185. doi: 10.1016/B978-075065332-9.50011-2.

[14]

J. J. Thijssen, Preemption in a real option game with a first mover advantage and player-specific uncertainty,, Journal of Economic Theory, 145 (2010), 2448. doi: 10.1016/j.jet.2010.10.002.

[15]

J. J. Thijssen, K. J. Huisman and P. M. Kort, Symmetric equilibrium strategies in game theoretic real option models,, Journal of Mathematical Economics, 48 (2012), 219. doi: 10.1016/j.jmateco.2012.05.004.

[16]

H. Weeds, Strategic delay in a real options model of R&D competition,, The Review of Economic Studies, 69 (2002), 729. doi: 10.1111/1467-937X.t01-1-00029.

show all references

References:
[1]

A. F. Azevedo and D. A. Paxson, Real options game models: A review,, Real Options 2010, (2010).

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The journal of political economy, 81 (1973), 637. doi: 10.1086/260062.

[3]

A. Bensoussan, J. D. Diltz and S. Hoe, Real options games in complete and incomplete markets with several decision makers,, SIAM Journal on Financial Mathematics, 1 (2010), 666. doi: 10.1137/090768060.

[4]

D. Becherer, Rational hedging and valuation of integrated risks under constant absolute risk aversion,, Insurance: Mathematics and economics, 33 (2003), 1. doi: 10.1016/S0167-6687(03)00140-9.

[5]

B. Chevalier-Roignant, C. M. Flath, A. Huchzermeier and L. Trigeorgis, Strategic investment under uncertainty: A synthesis,, European Journal of Operational Research, 215 (2011), 639. doi: 10.1016/j.ejor.2011.05.038.

[6]

D. Fudenberg and J. Tirole, Preemption and rent equalization in the adoption of new technology,, The Review of Economic Studies, 52 (1985), 383. doi: 10.2307/2297660.

[7]

M. Grasselli, V. Leclere and M. Ludkovski, Priority Option: The Value of Being a Leader,, International Journal of Theoretical and Applied Finance, 16 (2013). doi: 10.1142/S0219024913500040.

[8]

S. R. Grenadier, The strategic exercise of options: Development cascades and overbuilding in real estate markets,, The Journal of Finance, 51 (1996), 1653. doi: 10.2307/2329533.

[9]

S. R. Grenadier, Option exercise games: The intersection of real options and game theory,, Journal of Applied Corporate Finance, 13 (2000), 99. doi: 10.1111/j.1745-6622.2000.tb00057.x.

[10]

C.-f. Huang and L. Lode, Entry and exit: Subgame perfect equilibria in continuous-time stopping games,, working paper, (1991).

[11]

D. Paxson and H. Pinto, Rivalry under price and quantity uncertainty,, Review of Financial Economics, 14 (2005), 209. doi: 10.1016/j.rfe.2005.04.002.

[12]

F. Smets, Essays on Foreign Direct Investment,, Ph.D. Thesis, (1993).

[13]

A. Tsekrekos, The effect of first-mover's advantages on the strategic exercise of real option,, in Real R&D Options (eds. D. Paxson), (2003), 185. doi: 10.1016/B978-075065332-9.50011-2.

[14]

J. J. Thijssen, Preemption in a real option game with a first mover advantage and player-specific uncertainty,, Journal of Economic Theory, 145 (2010), 2448. doi: 10.1016/j.jet.2010.10.002.

[15]

J. J. Thijssen, K. J. Huisman and P. M. Kort, Symmetric equilibrium strategies in game theoretic real option models,, Journal of Mathematical Economics, 48 (2012), 219. doi: 10.1016/j.jmateco.2012.05.004.

[16]

H. Weeds, Strategic delay in a real options model of R&D competition,, The Review of Economic Studies, 69 (2002), 729. doi: 10.1111/1467-937X.t01-1-00029.

[1]

Nickolas J. Michelacakis. Strategic delegation effects on Cournot and Stackelberg competition. Journal of Dynamics & Games, 2018, 5 (3) : 231-242. doi: 10.3934/jdg.2018015

[2]

Yuwei Shen, Jinxing Xie, Tingting Li. The risk-averse newsvendor game with competition on demand. Journal of Industrial & Management Optimization, 2016, 12 (3) : 931-947. doi: 10.3934/jimo.2016.12.931

[3]

Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007

[4]

Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial & Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507

[5]

Na Song, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. A real option approach for investment opportunity valuation. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1213-1235. doi: 10.3934/jimo.2016069

[6]

Zhiping Zhou, Xinbao Liu, Jun Pei, Panos M. Pardalos, Hao Cheng. Competition of pricing and service investment between iot-based and traditional manufacturers. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1203-1218. doi: 10.3934/jimo.2018006

[7]

Georgios Konstantinidis. A game theoretic analysis of the cops and robber game. Journal of Dynamics & Games, 2014, 1 (4) : 599-619. doi: 10.3934/jdg.2014.1.599

[8]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[9]

Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031

[10]

Ying Ji, Shaojian Qu, Fuxing Chen. Environmental game modeling with uncertainties. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 989-1003. doi: 10.3934/dcdss.2019067

[11]

Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu, Lu Li. A real-time pricing scheme considering load uncertainty and price competition in smart grid market. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018178

[12]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[13]

Zhenbo Wang, Wenxun Xing, Shu-Cherng Fang. Two-person knapsack game. Journal of Industrial & Management Optimization, 2010, 6 (4) : 847-860. doi: 10.3934/jimo.2010.6.847

[14]

Hyeng Keun Koo, Shanjian Tang, Zhou Yang. A Dynkin game under Knightian uncertainty. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5467-5498. doi: 10.3934/dcds.2015.35.5467

[15]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[16]

Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1

[17]

Ido Polak, Nicolas Privault. A stochastic newsvendor game with dynamic retail prices. Journal of Industrial & Management Optimization, 2018, 14 (2) : 731-742. doi: 10.3934/jimo.2017072

[18]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[19]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[20]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]