-
Previous Article
A game theoretic analysis of the cops and robber game
- JDG Home
- This Issue
-
Next Article
Nonzero-sum stochastic differential games with additive structure and average payoffs
Investment under uncertainty, competition and regulation
1. | IMPA, Estrada Dona Castorina, 110, Rio De Janeiro, 22460-320, Brazil |
References:
[1] |
A. F. Azevedo and D. A. Paxson, Real options game models: A review,, Real Options 2010, (2010). Google Scholar |
[2] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, The journal of political economy, 81 (1973), 637.
doi: 10.1086/260062. |
[3] |
A. Bensoussan, J. D. Diltz and S. Hoe, Real options games in complete and incomplete markets with several decision makers,, SIAM Journal on Financial Mathematics, 1 (2010), 666.
doi: 10.1137/090768060. |
[4] |
D. Becherer, Rational hedging and valuation of integrated risks under constant absolute risk aversion,, Insurance: Mathematics and economics, 33 (2003), 1.
doi: 10.1016/S0167-6687(03)00140-9. |
[5] |
B. Chevalier-Roignant, C. M. Flath, A. Huchzermeier and L. Trigeorgis, Strategic investment under uncertainty: A synthesis,, European Journal of Operational Research, 215 (2011), 639.
doi: 10.1016/j.ejor.2011.05.038. |
[6] |
D. Fudenberg and J. Tirole, Preemption and rent equalization in the adoption of new technology,, The Review of Economic Studies, 52 (1985), 383.
doi: 10.2307/2297660. |
[7] |
M. Grasselli, V. Leclere and M. Ludkovski, Priority Option: The Value of Being a Leader,, International Journal of Theoretical and Applied Finance, 16 (2013).
doi: 10.1142/S0219024913500040. |
[8] |
S. R. Grenadier, The strategic exercise of options: Development cascades and overbuilding in real estate markets,, The Journal of Finance, 51 (1996), 1653.
doi: 10.2307/2329533. |
[9] |
S. R. Grenadier, Option exercise games: The intersection of real options and game theory,, Journal of Applied Corporate Finance, 13 (2000), 99.
doi: 10.1111/j.1745-6622.2000.tb00057.x. |
[10] |
C.-f. Huang and L. Lode, Entry and exit: Subgame perfect equilibria in continuous-time stopping games,, working paper, (1991). Google Scholar |
[11] |
D. Paxson and H. Pinto, Rivalry under price and quantity uncertainty,, Review of Financial Economics, 14 (2005), 209.
doi: 10.1016/j.rfe.2005.04.002. |
[12] |
F. Smets, Essays on Foreign Direct Investment,, Ph.D. Thesis, (1993). Google Scholar |
[13] |
A. Tsekrekos, The effect of first-mover's advantages on the strategic exercise of real option,, in Real R&D Options (eds. D. Paxson), (2003), 185.
doi: 10.1016/B978-075065332-9.50011-2. |
[14] |
J. J. Thijssen, Preemption in a real option game with a first mover advantage and player-specific uncertainty,, Journal of Economic Theory, 145 (2010), 2448.
doi: 10.1016/j.jet.2010.10.002. |
[15] |
J. J. Thijssen, K. J. Huisman and P. M. Kort, Symmetric equilibrium strategies in game theoretic real option models,, Journal of Mathematical Economics, 48 (2012), 219.
doi: 10.1016/j.jmateco.2012.05.004. |
[16] |
H. Weeds, Strategic delay in a real options model of R&D competition,, The Review of Economic Studies, 69 (2002), 729.
doi: 10.1111/1467-937X.t01-1-00029. |
show all references
References:
[1] |
A. F. Azevedo and D. A. Paxson, Real options game models: A review,, Real Options 2010, (2010). Google Scholar |
[2] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, The journal of political economy, 81 (1973), 637.
doi: 10.1086/260062. |
[3] |
A. Bensoussan, J. D. Diltz and S. Hoe, Real options games in complete and incomplete markets with several decision makers,, SIAM Journal on Financial Mathematics, 1 (2010), 666.
doi: 10.1137/090768060. |
[4] |
D. Becherer, Rational hedging and valuation of integrated risks under constant absolute risk aversion,, Insurance: Mathematics and economics, 33 (2003), 1.
doi: 10.1016/S0167-6687(03)00140-9. |
[5] |
B. Chevalier-Roignant, C. M. Flath, A. Huchzermeier and L. Trigeorgis, Strategic investment under uncertainty: A synthesis,, European Journal of Operational Research, 215 (2011), 639.
doi: 10.1016/j.ejor.2011.05.038. |
[6] |
D. Fudenberg and J. Tirole, Preemption and rent equalization in the adoption of new technology,, The Review of Economic Studies, 52 (1985), 383.
doi: 10.2307/2297660. |
[7] |
M. Grasselli, V. Leclere and M. Ludkovski, Priority Option: The Value of Being a Leader,, International Journal of Theoretical and Applied Finance, 16 (2013).
doi: 10.1142/S0219024913500040. |
[8] |
S. R. Grenadier, The strategic exercise of options: Development cascades and overbuilding in real estate markets,, The Journal of Finance, 51 (1996), 1653.
doi: 10.2307/2329533. |
[9] |
S. R. Grenadier, Option exercise games: The intersection of real options and game theory,, Journal of Applied Corporate Finance, 13 (2000), 99.
doi: 10.1111/j.1745-6622.2000.tb00057.x. |
[10] |
C.-f. Huang and L. Lode, Entry and exit: Subgame perfect equilibria in continuous-time stopping games,, working paper, (1991). Google Scholar |
[11] |
D. Paxson and H. Pinto, Rivalry under price and quantity uncertainty,, Review of Financial Economics, 14 (2005), 209.
doi: 10.1016/j.rfe.2005.04.002. |
[12] |
F. Smets, Essays on Foreign Direct Investment,, Ph.D. Thesis, (1993). Google Scholar |
[13] |
A. Tsekrekos, The effect of first-mover's advantages on the strategic exercise of real option,, in Real R&D Options (eds. D. Paxson), (2003), 185.
doi: 10.1016/B978-075065332-9.50011-2. |
[14] |
J. J. Thijssen, Preemption in a real option game with a first mover advantage and player-specific uncertainty,, Journal of Economic Theory, 145 (2010), 2448.
doi: 10.1016/j.jet.2010.10.002. |
[15] |
J. J. Thijssen, K. J. Huisman and P. M. Kort, Symmetric equilibrium strategies in game theoretic real option models,, Journal of Mathematical Economics, 48 (2012), 219.
doi: 10.1016/j.jmateco.2012.05.004. |
[16] |
H. Weeds, Strategic delay in a real options model of R&D competition,, The Review of Economic Studies, 69 (2002), 729.
doi: 10.1111/1467-937X.t01-1-00029. |
[1] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[2] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[3] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[4] |
David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121 |
[5] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[6] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[7] |
Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020359 |
[8] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[9] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[10] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[11] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[12] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[13] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[14] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[15] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[16] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[17] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[18] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[19] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[20] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]