October  2014, 1(4): 579-598. doi: 10.3934/jdg.2014.1.579

Investment under uncertainty, competition and regulation

1. 

IMPA, Estrada Dona Castorina, 110, Rio De Janeiro, 22460-320, Brazil

Received  September 2013 Revised  February 2014 Published  November 2014

We investigate a randomization procedure undertaken in real option games which can serve as a basic model of regulation in a duopoly model of preemptive investment. We recall the rigorous framework of M. Grasselli, V. Leclère and M. Ludkovsky (Priority Option: the value of being a leader, International Journal of Theoretical and Applied Finance, 16, 2013), and extend it to a random regulator. This model generalizes and unifies the different competitive frameworks proposed in the literature, and creates a new one similar to a Stackelberg leadership. We fully characterize strategic interactions in the several situations following from the parametrization of the regulator. Finally, we study the effect of the coordination game and uncertainty of outcome when agents are risk-averse, providing new intuitions for the standard case.
Citation: Adrien Nguyen Huu. Investment under uncertainty, competition and regulation. Journal of Dynamics & Games, 2014, 1 (4) : 579-598. doi: 10.3934/jdg.2014.1.579
References:
[1]

A. F. Azevedo and D. A. Paxson, Real options game models: A review,, Real Options 2010, (2010).   Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The journal of political economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

A. Bensoussan, J. D. Diltz and S. Hoe, Real options games in complete and incomplete markets with several decision makers,, SIAM Journal on Financial Mathematics, 1 (2010), 666.  doi: 10.1137/090768060.  Google Scholar

[4]

D. Becherer, Rational hedging and valuation of integrated risks under constant absolute risk aversion,, Insurance: Mathematics and economics, 33 (2003), 1.  doi: 10.1016/S0167-6687(03)00140-9.  Google Scholar

[5]

B. Chevalier-Roignant, C. M. Flath, A. Huchzermeier and L. Trigeorgis, Strategic investment under uncertainty: A synthesis,, European Journal of Operational Research, 215 (2011), 639.  doi: 10.1016/j.ejor.2011.05.038.  Google Scholar

[6]

D. Fudenberg and J. Tirole, Preemption and rent equalization in the adoption of new technology,, The Review of Economic Studies, 52 (1985), 383.  doi: 10.2307/2297660.  Google Scholar

[7]

M. Grasselli, V. Leclere and M. Ludkovski, Priority Option: The Value of Being a Leader,, International Journal of Theoretical and Applied Finance, 16 (2013).  doi: 10.1142/S0219024913500040.  Google Scholar

[8]

S. R. Grenadier, The strategic exercise of options: Development cascades and overbuilding in real estate markets,, The Journal of Finance, 51 (1996), 1653.  doi: 10.2307/2329533.  Google Scholar

[9]

S. R. Grenadier, Option exercise games: The intersection of real options and game theory,, Journal of Applied Corporate Finance, 13 (2000), 99.  doi: 10.1111/j.1745-6622.2000.tb00057.x.  Google Scholar

[10]

C.-f. Huang and L. Lode, Entry and exit: Subgame perfect equilibria in continuous-time stopping games,, working paper, (1991).   Google Scholar

[11]

D. Paxson and H. Pinto, Rivalry under price and quantity uncertainty,, Review of Financial Economics, 14 (2005), 209.  doi: 10.1016/j.rfe.2005.04.002.  Google Scholar

[12]

F. Smets, Essays on Foreign Direct Investment,, Ph.D. Thesis, (1993).   Google Scholar

[13]

A. Tsekrekos, The effect of first-mover's advantages on the strategic exercise of real option,, in Real R&D Options (eds. D. Paxson), (2003), 185.  doi: 10.1016/B978-075065332-9.50011-2.  Google Scholar

[14]

J. J. Thijssen, Preemption in a real option game with a first mover advantage and player-specific uncertainty,, Journal of Economic Theory, 145 (2010), 2448.  doi: 10.1016/j.jet.2010.10.002.  Google Scholar

[15]

J. J. Thijssen, K. J. Huisman and P. M. Kort, Symmetric equilibrium strategies in game theoretic real option models,, Journal of Mathematical Economics, 48 (2012), 219.  doi: 10.1016/j.jmateco.2012.05.004.  Google Scholar

[16]

H. Weeds, Strategic delay in a real options model of R&D competition,, The Review of Economic Studies, 69 (2002), 729.  doi: 10.1111/1467-937X.t01-1-00029.  Google Scholar

show all references

References:
[1]

A. F. Azevedo and D. A. Paxson, Real options game models: A review,, Real Options 2010, (2010).   Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, The journal of political economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

A. Bensoussan, J. D. Diltz and S. Hoe, Real options games in complete and incomplete markets with several decision makers,, SIAM Journal on Financial Mathematics, 1 (2010), 666.  doi: 10.1137/090768060.  Google Scholar

[4]

D. Becherer, Rational hedging and valuation of integrated risks under constant absolute risk aversion,, Insurance: Mathematics and economics, 33 (2003), 1.  doi: 10.1016/S0167-6687(03)00140-9.  Google Scholar

[5]

B. Chevalier-Roignant, C. M. Flath, A. Huchzermeier and L. Trigeorgis, Strategic investment under uncertainty: A synthesis,, European Journal of Operational Research, 215 (2011), 639.  doi: 10.1016/j.ejor.2011.05.038.  Google Scholar

[6]

D. Fudenberg and J. Tirole, Preemption and rent equalization in the adoption of new technology,, The Review of Economic Studies, 52 (1985), 383.  doi: 10.2307/2297660.  Google Scholar

[7]

M. Grasselli, V. Leclere and M. Ludkovski, Priority Option: The Value of Being a Leader,, International Journal of Theoretical and Applied Finance, 16 (2013).  doi: 10.1142/S0219024913500040.  Google Scholar

[8]

S. R. Grenadier, The strategic exercise of options: Development cascades and overbuilding in real estate markets,, The Journal of Finance, 51 (1996), 1653.  doi: 10.2307/2329533.  Google Scholar

[9]

S. R. Grenadier, Option exercise games: The intersection of real options and game theory,, Journal of Applied Corporate Finance, 13 (2000), 99.  doi: 10.1111/j.1745-6622.2000.tb00057.x.  Google Scholar

[10]

C.-f. Huang and L. Lode, Entry and exit: Subgame perfect equilibria in continuous-time stopping games,, working paper, (1991).   Google Scholar

[11]

D. Paxson and H. Pinto, Rivalry under price and quantity uncertainty,, Review of Financial Economics, 14 (2005), 209.  doi: 10.1016/j.rfe.2005.04.002.  Google Scholar

[12]

F. Smets, Essays on Foreign Direct Investment,, Ph.D. Thesis, (1993).   Google Scholar

[13]

A. Tsekrekos, The effect of first-mover's advantages on the strategic exercise of real option,, in Real R&D Options (eds. D. Paxson), (2003), 185.  doi: 10.1016/B978-075065332-9.50011-2.  Google Scholar

[14]

J. J. Thijssen, Preemption in a real option game with a first mover advantage and player-specific uncertainty,, Journal of Economic Theory, 145 (2010), 2448.  doi: 10.1016/j.jet.2010.10.002.  Google Scholar

[15]

J. J. Thijssen, K. J. Huisman and P. M. Kort, Symmetric equilibrium strategies in game theoretic real option models,, Journal of Mathematical Economics, 48 (2012), 219.  doi: 10.1016/j.jmateco.2012.05.004.  Google Scholar

[16]

H. Weeds, Strategic delay in a real options model of R&D competition,, The Review of Economic Studies, 69 (2002), 729.  doi: 10.1111/1467-937X.t01-1-00029.  Google Scholar

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[3]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[4]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[8]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[9]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[10]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[11]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[12]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[13]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[14]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[15]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[16]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[17]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[18]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[19]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[20]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

 Impact Factor: 

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]