Citation: |
[1] |
R. J. Aumann and M. Maschler, Repeated Games with Incomplete Information, MIT Press, Cambridge, MA, 1995. |
[2] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser - Systems & Control: Foundations & Applications, 1997.doi: 10.1007/978-0-8176-4755-1. |
[3] |
D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, 1978. |
[4] |
P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York, 1999.doi: 10.1002/9780470316962. |
[5] |
I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Applied Mathematics & Optimization, 11 (1984), 161-181.doi: 10.1007/BF01442176. |
[6] |
P. Cardaliaguet, C. Rainer, D. Rosenberg and N. Vieille, Markov games with frequent actions and incomplete information, 2013. arXiv:1307.3365v1 [math.OC]. |
[7] |
N. El Karoui, D. Nguyen and M. Jeanblanc-Picqué, Compactification methods in the control of degenerate diffusions: Existence of an optimal control, Stochastics, 20 (1987), 169-219.doi: 10.1080/17442508708833443. |
[8] |
S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986.doi: 10.1002/9780470316658. |
[9] |
M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Applied Mathematics & Optimization, 15 (1987), 1-13.doi: 10.1007/BF01442644. |
[10] |
W. H. Fleming, The convergence problem for differential games, Journal of Mathematical Analysis and Applications, 3 (1961), 102-116.doi: 10.1016/0022-247X(61)90009-9. |
[11] |
N. Gast, B. Gaujal and J.-Y. Le Boudec, Mean field for markov decision processes: From discrete to continuous optimization, IEEE Transactions on Automatic Control, 57 (2012), 2266-2280.doi: 10.1109/TAC.2012.2186176. |
[12] |
F. Gensbittel, Continuous-time Limit of Dynamic Games with Incomplete Information and a More Informed Player, hal-00910970, version 1, 2013. |
[13] |
R. Gonzalez and E. Rofman, On deterministic control problems: An approximation procedure for the optimal cost I. the stationary problem, SIAM Journal on Control and Optimization, 23 (1985), 242-266.doi: 10.1137/0323018. |
[14] |
X. Guo and O. Hernández-Lerma, Nonzero-sum games for continuous-time markov chains with unbounded discounted payoffs, Journal of Applied Probability, 42 (2005), 303-320.doi: 10.1239/jap/1118777172. |
[15] |
O. Hernández-Lerma and J. B. Laserre, Discrete-Time Markov Control Processes: Basic Optimality criteria, Springer-Verlag, 1996.doi: 10.1007/978-1-4612-0729-0. |
[16] |
J. Hörner, T. Sugaya, S. Takahashi and N. Vieille, Recursive methods in discounted stochastic games: An algorithm for $\delta\rightarrow 1$ and a folk theorem, Econometrica, 79 (2011), 1277-1318.doi: 10.3982/ECTA9004. |
[17] |
O. Kallenberg, Foundations of Modern Probability, Springer, New York [u.a.], 2nd edition, 2002.doi: 10.1007/978-1-4757-4015-8. |
[18] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 2nd edition, 2000. |
[19] |
H. J. Kushner, Weak convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Birkhäuser - Systems & Control: Foundations & Applications, Boston, MA, 1990.doi: 10.1007/978-1-4612-4482-0. |
[20] |
H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer, New York, 2nd edition, 2001.doi: 10.1007/978-1-4613-0007-6. |
[21] |
A. Neyman, Stochastic games with short-stage duration, Dynamic Games and Applications, 3 (2013), 236-278.doi: 10.1007/s13235-013-0083-x. |
[22] |
A. S. Nowak and T. E. S. Raghavan, Existence of stationary correlated equilibria with symmetric information for discounted stochastic games, Mathematics of Operations Research, 17 (1992), 519-526.doi: 10.1287/moor.17.3.519. |
[23] |
W. H. Sandholm and M. Staudigl, Stochastic stability in the small noise double limit, I: Theory, Unpublished manuscript, University of Wisconsin and Bielefeld University, 2014. |
[24] |
W. H. Sandholm and M. Staudigl, Stochastic stability in the small noise double limit, II: The logit model, Unpublished manuscript, University of Wisconsin and Bielefeld University, 2014. |
[25] |
Y. Sannikov, Games with imperfectly observable actions in continuous time, Econometrica, 75 (2007), 1285-1329.doi: 10.1111/j.1468-0262.2007.00795.x. |
[26] |
S. Soulaimani, M. Quincampoix and S. Sorin, Repeated games and qualitative differential games: Approachability and comparison of strategies, SIAM Journal on Control and Optimization, 48 (2009), 2461-2479.doi: 10.1137/090749098. |
[27] |
M. Staudigl, Stochastic stability in asymmetric binary choice coordination games, Games and Economic Behavior, 75 (2012), 372-401.doi: 10.1016/j.geb.2011.11.003. |
[28] |
M. Staudigl and J.-H. Steg, On repeated games with imperfect public monitoring: From discrete to continuous time, Bielefeld University, unpublished manuscript, 2014. |
[29] |
J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972. |