\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A limit theorem for Markov decision processes

Abstract / Introduction Related Papers Cited by
  • In this paper I prove a deterministic approximation theorem for a sequence of Markov decision processes with finitely many actions and general state spaces as they appear frequently in economics, game theory and operations research. Using viscosity solution methods no a-priori differentiabililty assumptions are imposed on the value function.
    Mathematics Subject Classification: Primary: 49L20, 49L25, 90C40; Secondary: 60J20, 60F17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. J. Aumann and M. Maschler, Repeated Games with Incomplete Information, MIT Press, Cambridge, MA, 1995.

    [2]

    M. Bardi and I. Capuzzo-Dolcetta, Optimal control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser - Systems & Control: Foundations & Applications, 1997.doi: 10.1007/978-0-8176-4755-1.

    [3]

    D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, 1978.

    [4]

    P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York, 1999.doi: 10.1002/9780470316962.

    [5]

    I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Applied Mathematics & Optimization, 11 (1984), 161-181.doi: 10.1007/BF01442176.

    [6]

    P. Cardaliaguet, C. Rainer, D. Rosenberg and N. Vieille, Markov games with frequent actions and incomplete information, 2013. arXiv:1307.3365v1 [math.OC].

    [7]

    N. El Karoui, D. Nguyen and M. Jeanblanc-Picqué, Compactification methods in the control of degenerate diffusions: Existence of an optimal control, Stochastics, 20 (1987), 169-219.doi: 10.1080/17442508708833443.

    [8]

    S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986.doi: 10.1002/9780470316658.

    [9]

    M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Applied Mathematics & Optimization, 15 (1987), 1-13.doi: 10.1007/BF01442644.

    [10]

    W. H. Fleming, The convergence problem for differential games, Journal of Mathematical Analysis and Applications, 3 (1961), 102-116.doi: 10.1016/0022-247X(61)90009-9.

    [11]

    N. Gast, B. Gaujal and J.-Y. Le Boudec, Mean field for markov decision processes: From discrete to continuous optimization, IEEE Transactions on Automatic Control, 57 (2012), 2266-2280.doi: 10.1109/TAC.2012.2186176.

    [12]

    F. Gensbittel, Continuous-time Limit of Dynamic Games with Incomplete Information and a More Informed Player, hal-00910970, version 1, 2013.

    [13]

    R. Gonzalez and E. Rofman, On deterministic control problems: An approximation procedure for the optimal cost I. the stationary problem, SIAM Journal on Control and Optimization, 23 (1985), 242-266.doi: 10.1137/0323018.

    [14]

    X. Guo and O. Hernández-Lerma, Nonzero-sum games for continuous-time markov chains with unbounded discounted payoffs, Journal of Applied Probability, 42 (2005), 303-320.doi: 10.1239/jap/1118777172.

    [15]

    O. Hernández-Lerma and J. B. Laserre, Discrete-Time Markov Control Processes: Basic Optimality criteria, Springer-Verlag, 1996.doi: 10.1007/978-1-4612-0729-0.

    [16]

    J. Hörner, T. Sugaya, S. Takahashi and N. Vieille, Recursive methods in discounted stochastic games: An algorithm for $\delta\rightarrow 1$ and a folk theorem, Econometrica, 79 (2011), 1277-1318.doi: 10.3982/ECTA9004.

    [17]

    O. Kallenberg, Foundations of Modern Probability, Springer, New York [u.a.], 2nd edition, 2002.doi: 10.1007/978-1-4757-4015-8.

    [18]

    I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 2nd edition, 2000.

    [19]

    H. J. Kushner, Weak convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Birkhäuser - Systems & Control: Foundations & Applications, Boston, MA, 1990.doi: 10.1007/978-1-4612-4482-0.

    [20]

    H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer, New York, 2nd edition, 2001.doi: 10.1007/978-1-4613-0007-6.

    [21]

    A. Neyman, Stochastic games with short-stage duration, Dynamic Games and Applications, 3 (2013), 236-278.doi: 10.1007/s13235-013-0083-x.

    [22]

    A. S. Nowak and T. E. S. Raghavan, Existence of stationary correlated equilibria with symmetric information for discounted stochastic games, Mathematics of Operations Research, 17 (1992), 519-526.doi: 10.1287/moor.17.3.519.

    [23]

    W. H. Sandholm and M. Staudigl, Stochastic stability in the small noise double limit, I: Theory, Unpublished manuscript, University of Wisconsin and Bielefeld University, 2014.

    [24]

    W. H. Sandholm and M. Staudigl, Stochastic stability in the small noise double limit, II: The logit model, Unpublished manuscript, University of Wisconsin and Bielefeld University, 2014.

    [25]

    Y. Sannikov, Games with imperfectly observable actions in continuous time, Econometrica, 75 (2007), 1285-1329.doi: 10.1111/j.1468-0262.2007.00795.x.

    [26]

    S. Soulaimani, M. Quincampoix and S. Sorin, Repeated games and qualitative differential games: Approachability and comparison of strategies, SIAM Journal on Control and Optimization, 48 (2009), 2461-2479.doi: 10.1137/090749098.

    [27]

    M. Staudigl, Stochastic stability in asymmetric binary choice coordination games, Games and Economic Behavior, 75 (2012), 372-401.doi: 10.1016/j.geb.2011.11.003.

    [28]

    M. Staudigl and J.-H. Steg, On repeated games with imperfect public monitoring: From discrete to continuous time, Bielefeld University, unpublished manuscript, 2014.

    [29]

    J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return