-
Previous Article
Average optimal strategies for zero-sum Markov games with poorly known payoff function on one side
- JDG Home
- This Issue
-
Next Article
On the Euler equation approach to discrete--time nonstationary optimal control problems
Optimal control indicators for the assessment of the influence of government policy to business cycle shocks
1. | Department of Economics, Division of Mathematics-Informatics, National and Kapodistrian University of Athens, 8 Pesmazoglou Street, Athens, 105 59, Greece, Greece |
References:
[1] |
A. G. Malliaris and J. L. Urrutia, How big is the random walk in macroeconomic time series: Variance ratio tests,, Economic Uncertainty, (2005), 9.
doi: 10.1142/9789812701015_0002. |
[2] |
C. Burnside and M. Eichenbaum, Factor Hoarding and the Propagation of Business Cycle Shocks,, American Economic Review, 86 (1996), 1154. Google Scholar |
[3] |
C. R. Nelson and C. I. Plosser, Trends and random walks in macroeconomic time series: Some evidence and implications,, Journal of Monetary Economics, 10 (1982), 139.
doi: 10.1016/0304-3932(82)90012-5. |
[4] |
D. E. W. Laidler, An elementary monetarist model of simultaneous fluctuations in prices and output,, in, 119 (1976), 75.
doi: 10.1007/978-3-642-46331-0_4. |
[5] |
F. Canova, Detrending and business cycle facts,, Journal of Monetary Economics, 41 (1998), 475.
doi: 10.1016/S0304-3932(98)00006-3. |
[6] |
F. E. Kydland and E. C. Prescott, Time to build and aggregate fluctuations,, Econometrica, 50 (1982), 1345. Google Scholar |
[7] |
J.-O. Cho and T. F. Cooley, The business cycle with nominal contracts,, Economic Theory, 6 (1995), 13.
doi: 10.1007/BF01213939. |
[8] |
J. B. Long, Jr. and C. I. Plosser, Real business cycles,, Journal of Political Economy, 91 (1983), 39. Google Scholar |
[9] |
J. H. Stock and M. W. Watson, Does GNP have a unit root?,, Economics Letters, 22 (1986), 147.
doi: 10.1016/0165-1765(86)90222-3. |
[10] |
J. Y. Campbell and N. G. Mankiw, Are output fluctuations transitory?,, The Quarterly Journal of Economics, 102 (1987), 857.
doi: 10.2307/1884285. |
[11] |
L. J. Christiano and M. Eichenbaum, Current real-business cycle theories and aggregate labor-market fluctuations,, American Economic Review, 82 (1992), 430. Google Scholar |
[12] |
L. J. Christiano and M. Eichenbaum, Unit roots in real GNP: Do we know and do we care?,, Carnegie-Rochester Conference Series on Public Policy, 32 (1990), 7. Google Scholar |
[13] |
Lutz Arnold, "Business Cycle Theory,", Oxford University Press, (2002).
doi: 10.1093/acprof:oso/9780199256815.001.0001. |
[14] |
M. Boldrin and M. Horvath, Labor contracts and business cycles,, Journal of Political Economy, 103 (1995), 972.
doi: 10.1086/262010. |
[15] |
N. G. Mankiw and D. Romer, "New Keynesian Economics," Vols. 1 and 2,, Cambridge University Press, (1991). Google Scholar |
[16] |
O. J. Blanchard and S. Fischer, "Lectures in Macroeconomics,", MIT Press, (1989). Google Scholar |
[17] |
Philip R. Lane, The cyclical behaviour of fiscal policy: Evidence from the OECD,, Journal of Public Economics, 87 (2003), 2661.
doi: 10.1016/S0047-2727(02)00075-0. |
[18] |
R. Cottle, J. Pang and R. Stone, "Linear Complimentarity Problem,", Classics in Applied Mathematics, (2009). Google Scholar |
[19] |
R. E. Lucas, Jr., Econometric policy evaluation: A critique,, in, (1976), 19.
doi: 10.1016/S0167-2231(76)80003-6. |
[20] |
R. E. A. Farmer and J.-T. Guo, Real business cycles and the animal spirits hypothesis,, Journal of Economic Theory, 63 (1994), 42.
doi: 10.1006/jeth.1994.1032. |
[21] |
R. G. King and S. T. Rebelo, Resuscitating real business cycles,, in, (1999), 927.
doi: 10.1016/S1574-0048(99)10022-3. |
[22] |
R. G. D. Allen, "Macroeconomic Theory: A Mathematical Treatment,", Macmillan, (1967). Google Scholar |
[23] |
R. Neck, The Contribution of Control Theory to the Analysis of Economic Policy,, in, (2008), 6. Google Scholar |
[24] |
V. R. Bencivenga, An econometric study of hours and output variation with preference shocks,, International Economic Review, 33 (1992), 449.
doi: 10.2307/2526904. |
[25] |
S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004).
|
[26] |
T. Puu and I. Sushko, A business cycle model with cubic nonlinearity,, Chaos, 19 (2004), 597.
doi: 10.1016/S0960-0779(03)00132-2. |
show all references
References:
[1] |
A. G. Malliaris and J. L. Urrutia, How big is the random walk in macroeconomic time series: Variance ratio tests,, Economic Uncertainty, (2005), 9.
doi: 10.1142/9789812701015_0002. |
[2] |
C. Burnside and M. Eichenbaum, Factor Hoarding and the Propagation of Business Cycle Shocks,, American Economic Review, 86 (1996), 1154. Google Scholar |
[3] |
C. R. Nelson and C. I. Plosser, Trends and random walks in macroeconomic time series: Some evidence and implications,, Journal of Monetary Economics, 10 (1982), 139.
doi: 10.1016/0304-3932(82)90012-5. |
[4] |
D. E. W. Laidler, An elementary monetarist model of simultaneous fluctuations in prices and output,, in, 119 (1976), 75.
doi: 10.1007/978-3-642-46331-0_4. |
[5] |
F. Canova, Detrending and business cycle facts,, Journal of Monetary Economics, 41 (1998), 475.
doi: 10.1016/S0304-3932(98)00006-3. |
[6] |
F. E. Kydland and E. C. Prescott, Time to build and aggregate fluctuations,, Econometrica, 50 (1982), 1345. Google Scholar |
[7] |
J.-O. Cho and T. F. Cooley, The business cycle with nominal contracts,, Economic Theory, 6 (1995), 13.
doi: 10.1007/BF01213939. |
[8] |
J. B. Long, Jr. and C. I. Plosser, Real business cycles,, Journal of Political Economy, 91 (1983), 39. Google Scholar |
[9] |
J. H. Stock and M. W. Watson, Does GNP have a unit root?,, Economics Letters, 22 (1986), 147.
doi: 10.1016/0165-1765(86)90222-3. |
[10] |
J. Y. Campbell and N. G. Mankiw, Are output fluctuations transitory?,, The Quarterly Journal of Economics, 102 (1987), 857.
doi: 10.2307/1884285. |
[11] |
L. J. Christiano and M. Eichenbaum, Current real-business cycle theories and aggregate labor-market fluctuations,, American Economic Review, 82 (1992), 430. Google Scholar |
[12] |
L. J. Christiano and M. Eichenbaum, Unit roots in real GNP: Do we know and do we care?,, Carnegie-Rochester Conference Series on Public Policy, 32 (1990), 7. Google Scholar |
[13] |
Lutz Arnold, "Business Cycle Theory,", Oxford University Press, (2002).
doi: 10.1093/acprof:oso/9780199256815.001.0001. |
[14] |
M. Boldrin and M. Horvath, Labor contracts and business cycles,, Journal of Political Economy, 103 (1995), 972.
doi: 10.1086/262010. |
[15] |
N. G. Mankiw and D. Romer, "New Keynesian Economics," Vols. 1 and 2,, Cambridge University Press, (1991). Google Scholar |
[16] |
O. J. Blanchard and S. Fischer, "Lectures in Macroeconomics,", MIT Press, (1989). Google Scholar |
[17] |
Philip R. Lane, The cyclical behaviour of fiscal policy: Evidence from the OECD,, Journal of Public Economics, 87 (2003), 2661.
doi: 10.1016/S0047-2727(02)00075-0. |
[18] |
R. Cottle, J. Pang and R. Stone, "Linear Complimentarity Problem,", Classics in Applied Mathematics, (2009). Google Scholar |
[19] |
R. E. Lucas, Jr., Econometric policy evaluation: A critique,, in, (1976), 19.
doi: 10.1016/S0167-2231(76)80003-6. |
[20] |
R. E. A. Farmer and J.-T. Guo, Real business cycles and the animal spirits hypothesis,, Journal of Economic Theory, 63 (1994), 42.
doi: 10.1006/jeth.1994.1032. |
[21] |
R. G. King and S. T. Rebelo, Resuscitating real business cycles,, in, (1999), 927.
doi: 10.1016/S1574-0048(99)10022-3. |
[22] |
R. G. D. Allen, "Macroeconomic Theory: A Mathematical Treatment,", Macmillan, (1967). Google Scholar |
[23] |
R. Neck, The Contribution of Control Theory to the Analysis of Economic Policy,, in, (2008), 6. Google Scholar |
[24] |
V. R. Bencivenga, An econometric study of hours and output variation with preference shocks,, International Economic Review, 33 (1992), 449.
doi: 10.2307/2526904. |
[25] |
S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004).
|
[26] |
T. Puu and I. Sushko, A business cycle model with cubic nonlinearity,, Chaos, 19 (2004), 597.
doi: 10.1016/S0960-0779(03)00132-2. |
[1] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[2] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[3] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[4] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[5] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[6] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[7] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[8] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[9] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[10] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[11] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[12] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[13] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[14] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[15] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[16] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[17] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[18] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[19] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[20] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]