January  2015, 2(1): 1-32. doi: 10.3934/jdg.2015.2.1

Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation

1. 

Facultad de Economía, Universidad Autónoma San Luis Potosí, Álvaro Obregón 64, Centro Histórico, PC 78000, San Luis Potosí, Mexico

2. 

Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, PC 11300, Montevideo, Uruguay, Uruguay, Uruguay

Received  December 2014 Revised  April 2015 Published  June 2015

The object of this paper is to study the labor market using evolutionary game theory as a framework. The entities of this competitive model are firms and workers, with and without external regulation. Firms can either innovate or not, while workers can either be skilled or not. Under the most simple model, called normal model, the economy rests in a poverty trap, where workers are not skilled and firms are not innovative. This Nash equilibria is stable even when both entities follow the optimum strategy in an on-off fashion. This fact suggests the need of an external agent that promotes the economy in order not to fall in a poverty trap.
    Therefore, an evolutionary competitive model is introduced, where an external regulator provides loans to encourage workers to be skilled and firms to be innovative. This model includes poverty traps but also other Nash equilibria, where firms and workers are jointly innovative and skilled.
    The external regulator, in a three-phase process (loans, taxes and inactivity) achieves a common wealth, with a prosperous economy, with innovative firms and skilled workers.
Citation: Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1
References:
[1]

E. Accinelli, S. London, L. Punzo and E. Sanchez, Dynamic complementarities, efficiency and nash equilibria for populations of firms and workers,, Journal of Economics and Econometrics, 53 (2010), 90. Google Scholar

[2]

E. Accinelli, S. London, L. F. Punzo and E. J. S. Carrera, Poverty traps, rationality and evolution,, Dynamics, 1 (2011), 37. doi: 10.1007/978-3-642-11456-4_4. Google Scholar

[3]

E. Accinelli, S. London and E. Sanchez, A model of imitative behaviour in the population of firms and workers,, Technical Report, (2009). Google Scholar

[4]

C. Azariadis and J. Stachurski, Chapter 5 poverty traps,, in Handbook of Economic Growth, (2005), 295. doi: 10.1016/S1574-0684(05)01005-1. Google Scholar

[5]

C. B. Barrett and B. M. Swallow, Fractal poverty traps,, World Development, 34 (2006), 1. doi: 10.1016/j.worlddev.2005.06.008. Google Scholar

[6]

G. Dahlquist, A. Bjorck and N. Anderson, Numerical Methods,, Reprint edition, (2003). Google Scholar

[7]

R. Darling and J. Norris, Differential equation approximations for Markov chains,, Probability Surveys, 5 (2008), 37. doi: 10.1214/07-PS121. Google Scholar

[8]

J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae,, Journal of Computational and Applied Mathematics, 6 (1980), 19. doi: 10.1016/0771-050X(80)90013-3. Google Scholar

[9]

M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, And Linear Algebra,, Acad. Press, (1974). Google Scholar

[10]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15. doi: 10.1038/246015a0. Google Scholar

[11]

J. Nash, Non-cooperative games,, The Annals of Mathematics, 54 (1951), 286. doi: 10.2307/1969529. Google Scholar

[12]

P. Robert, Stochastic Networks and Queues,, Springer, (2003). doi: 10.1007/978-3-662-13052-0. Google Scholar

[13]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995). Google Scholar

show all references

References:
[1]

E. Accinelli, S. London, L. Punzo and E. Sanchez, Dynamic complementarities, efficiency and nash equilibria for populations of firms and workers,, Journal of Economics and Econometrics, 53 (2010), 90. Google Scholar

[2]

E. Accinelli, S. London, L. F. Punzo and E. J. S. Carrera, Poverty traps, rationality and evolution,, Dynamics, 1 (2011), 37. doi: 10.1007/978-3-642-11456-4_4. Google Scholar

[3]

E. Accinelli, S. London and E. Sanchez, A model of imitative behaviour in the population of firms and workers,, Technical Report, (2009). Google Scholar

[4]

C. Azariadis and J. Stachurski, Chapter 5 poverty traps,, in Handbook of Economic Growth, (2005), 295. doi: 10.1016/S1574-0684(05)01005-1. Google Scholar

[5]

C. B. Barrett and B. M. Swallow, Fractal poverty traps,, World Development, 34 (2006), 1. doi: 10.1016/j.worlddev.2005.06.008. Google Scholar

[6]

G. Dahlquist, A. Bjorck and N. Anderson, Numerical Methods,, Reprint edition, (2003). Google Scholar

[7]

R. Darling and J. Norris, Differential equation approximations for Markov chains,, Probability Surveys, 5 (2008), 37. doi: 10.1214/07-PS121. Google Scholar

[8]

J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae,, Journal of Computational and Applied Mathematics, 6 (1980), 19. doi: 10.1016/0771-050X(80)90013-3. Google Scholar

[9]

M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, And Linear Algebra,, Acad. Press, (1974). Google Scholar

[10]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15. doi: 10.1038/246015a0. Google Scholar

[11]

J. Nash, Non-cooperative games,, The Annals of Mathematics, 54 (1951), 286. doi: 10.2307/1969529. Google Scholar

[12]

P. Robert, Stochastic Networks and Queues,, Springer, (2003). doi: 10.1007/978-3-662-13052-0. Google Scholar

[13]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995). Google Scholar

[1]

Andrew Vlasic. Long-run analysis of the stochastic replicator dynamics in the presence of random jumps. Journal of Dynamics & Games, 2018, 5 (4) : 283-309. doi: 10.3934/jdg.2018018

[2]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[3]

MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777

[4]

Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic & Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109

[5]

Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics & Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003

[6]

Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics & Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017

[7]

Yuanshi Wang, Hong Wu, Shigui Ruan. Global dynamics and bifurcations in a four-dimensional replicator system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 259-271. doi: 10.3934/dcdsb.2013.18.259

[8]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[9]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[10]

Yu Wu, Xiaopeng Zhao, Mingjun Zhang. Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences & Engineering, 2012, 9 (4) : 937-952. doi: 10.3934/mbe.2012.9.937

[11]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

[12]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[13]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[14]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[15]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[16]

T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz. Dynamics of some stochastic chemostat models with multiplicative noise. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1893-1914. doi: 10.3934/cpaa.2017092

[17]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[18]

Kais Hamza, Fima C. Klebaner, Olivia Mah. Volatility in options formulae for general stochastic dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 435-446. doi: 10.3934/dcdsb.2014.19.435

[19]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[20]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

 Impact Factor: 

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

[Back to Top]