January  2015, 2(1): 1-32. doi: 10.3934/jdg.2015.2.1

Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation

1. 

Facultad de Economía, Universidad Autónoma San Luis Potosí, Álvaro Obregón 64, Centro Histórico, PC 78000, San Luis Potosí, Mexico

2. 

Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, PC 11300, Montevideo, Uruguay, Uruguay, Uruguay

Received  December 2014 Revised  April 2015 Published  June 2015

The object of this paper is to study the labor market using evolutionary game theory as a framework. The entities of this competitive model are firms and workers, with and without external regulation. Firms can either innovate or not, while workers can either be skilled or not. Under the most simple model, called normal model, the economy rests in a poverty trap, where workers are not skilled and firms are not innovative. This Nash equilibria is stable even when both entities follow the optimum strategy in an on-off fashion. This fact suggests the need of an external agent that promotes the economy in order not to fall in a poverty trap.
    Therefore, an evolutionary competitive model is introduced, where an external regulator provides loans to encourage workers to be skilled and firms to be innovative. This model includes poverty traps but also other Nash equilibria, where firms and workers are jointly innovative and skilled.
    The external regulator, in a three-phase process (loans, taxes and inactivity) achieves a common wealth, with a prosperous economy, with innovative firms and skilled workers.
Citation: Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1
References:
[1]

E. Accinelli, S. London, L. Punzo and E. Sanchez, Dynamic complementarities, efficiency and nash equilibria for populations of firms and workers,, Journal of Economics and Econometrics, 53 (2010), 90.   Google Scholar

[2]

E. Accinelli, S. London, L. F. Punzo and E. J. S. Carrera, Poverty traps, rationality and evolution,, Dynamics, 1 (2011), 37.  doi: 10.1007/978-3-642-11456-4_4.  Google Scholar

[3]

E. Accinelli, S. London and E. Sanchez, A model of imitative behaviour in the population of firms and workers,, Technical Report, (2009).   Google Scholar

[4]

C. Azariadis and J. Stachurski, Chapter 5 poverty traps,, in Handbook of Economic Growth, (2005), 295.  doi: 10.1016/S1574-0684(05)01005-1.  Google Scholar

[5]

C. B. Barrett and B. M. Swallow, Fractal poverty traps,, World Development, 34 (2006), 1.  doi: 10.1016/j.worlddev.2005.06.008.  Google Scholar

[6]

G. Dahlquist, A. Bjorck and N. Anderson, Numerical Methods,, Reprint edition, (2003).   Google Scholar

[7]

R. Darling and J. Norris, Differential equation approximations for Markov chains,, Probability Surveys, 5 (2008), 37.  doi: 10.1214/07-PS121.  Google Scholar

[8]

J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae,, Journal of Computational and Applied Mathematics, 6 (1980), 19.  doi: 10.1016/0771-050X(80)90013-3.  Google Scholar

[9]

M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, And Linear Algebra,, Acad. Press, (1974).   Google Scholar

[10]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.  doi: 10.1038/246015a0.  Google Scholar

[11]

J. Nash, Non-cooperative games,, The Annals of Mathematics, 54 (1951), 286.  doi: 10.2307/1969529.  Google Scholar

[12]

P. Robert, Stochastic Networks and Queues,, Springer, (2003).  doi: 10.1007/978-3-662-13052-0.  Google Scholar

[13]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

show all references

References:
[1]

E. Accinelli, S. London, L. Punzo and E. Sanchez, Dynamic complementarities, efficiency and nash equilibria for populations of firms and workers,, Journal of Economics and Econometrics, 53 (2010), 90.   Google Scholar

[2]

E. Accinelli, S. London, L. F. Punzo and E. J. S. Carrera, Poverty traps, rationality and evolution,, Dynamics, 1 (2011), 37.  doi: 10.1007/978-3-642-11456-4_4.  Google Scholar

[3]

E. Accinelli, S. London and E. Sanchez, A model of imitative behaviour in the population of firms and workers,, Technical Report, (2009).   Google Scholar

[4]

C. Azariadis and J. Stachurski, Chapter 5 poverty traps,, in Handbook of Economic Growth, (2005), 295.  doi: 10.1016/S1574-0684(05)01005-1.  Google Scholar

[5]

C. B. Barrett and B. M. Swallow, Fractal poverty traps,, World Development, 34 (2006), 1.  doi: 10.1016/j.worlddev.2005.06.008.  Google Scholar

[6]

G. Dahlquist, A. Bjorck and N. Anderson, Numerical Methods,, Reprint edition, (2003).   Google Scholar

[7]

R. Darling and J. Norris, Differential equation approximations for Markov chains,, Probability Surveys, 5 (2008), 37.  doi: 10.1214/07-PS121.  Google Scholar

[8]

J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae,, Journal of Computational and Applied Mathematics, 6 (1980), 19.  doi: 10.1016/0771-050X(80)90013-3.  Google Scholar

[9]

M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, And Linear Algebra,, Acad. Press, (1974).   Google Scholar

[10]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15.  doi: 10.1038/246015a0.  Google Scholar

[11]

J. Nash, Non-cooperative games,, The Annals of Mathematics, 54 (1951), 286.  doi: 10.2307/1969529.  Google Scholar

[12]

P. Robert, Stochastic Networks and Queues,, Springer, (2003).  doi: 10.1007/978-3-662-13052-0.  Google Scholar

[13]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).   Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[6]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[9]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

 Impact Factor: 

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (5)

[Back to Top]