January  2015, 2(1): 103-115. doi: 10.3934/jdg.2015.2.103

Reversibility and oscillations in zero-sum discounted stochastic games

1. 

Sorbonne Universités, UPMC Univ Paris 06, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, F-75005, Paris, France

2. 

Université Paris-Dauphine, CEREMADE, Place du Maréchal De Lattre de Tassigny, 75775 Paris cedex 16, France

Received  November 2014 Revised  January 2015 Published  June 2015

We show that by coupling two well-behaved exit-time problems one can construct two-person zero-sum dynamic games having oscillating discounted values. This unifies and generalizes recent examples of stochastic games with finite state space, due to Vigeral (2013) and Ziliotto (2013).
Citation: Sylvain Sorin, Guillaume Vigeral. Reversibility and oscillations in zero-sum discounted stochastic games. Journal of Dynamics & Games, 2015, 2 (1) : 103-115. doi: 10.3934/jdg.2015.2.103
References:
[1]

T. Bewley and E. Kohlberg, On stochastic games with stationary optimal strategies,, Mathematics of Operations Research, 3 (1978), 104.  doi: 10.1287/moor.3.2.104.  Google Scholar

[2]

J. Bolte, S. Gaubert and G. Vigeral, Definable zero-sum stochastic games,, Mathematics of Operation Research, 40 (2015), 171.  doi: 10.1287/moor.2014.0666.  Google Scholar

[3]

G. Grimmett and D. Stirzaker, Probability and Random Processes,, Oxford University Press, (2001).   Google Scholar

[4]

R. Laraki, Explicit formulas for repeated games with absorbing states,, International Journal of Game Theory, 39 (2010), 53.  doi: 10.1007/s00182-009-0193-2.  Google Scholar

[5]

J.-F. Mertens, A. Neyman and D. Rosenberg, Absorbing games with compact action spaces,, Mathematics of Operation Research, 34 (2009), 257.  doi: 10.1287/moor.1080.0372.  Google Scholar

[6]

J.-F. Mertens, S. Sorin and S. Zamir, Repeated Games,, Cambridge University Press, (2015).   Google Scholar

[7]

A. Neyman, Stochastic games and nonexpansive maps,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 397.  doi: 10.1007/978-94-010-0189-2_26.  Google Scholar

[8]

D. Rosenberg and S. Sorin, An operator approach to zero-sum repeated games,, Israel Journal of Mathematics, 121 (2001), 221.  doi: 10.1007/BF02802505.  Google Scholar

[9]

S. Sorin, A First Course on Zero-SumRepeated Games,, Springer-Verlag, (2002).   Google Scholar

[10]

S. Sorin, The operator approach to zero-sum stochastic games,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 417.   Google Scholar

[11]

S. Sorin and G. Vigeral, Existence of the limit value of two person zero-sum discounted repeated games via comparison theorems,, Journal of Opimization Theory and Applications, 157 (2013), 564.  doi: 10.1007/s10957-012-0193-4.  Google Scholar

[12]

G. Vigeral, A zero-sum stochastic game with compact action sets and no asymptotic value,, Dynamic Games and Applications, 3 (2013), 172.  doi: 10.1007/s13235-013-0073-z.  Google Scholar

[13]

B. Ziliotto, Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture maxmin=$\lim v_n$,, to appear in Annals of Probability, (2013).   Google Scholar

show all references

References:
[1]

T. Bewley and E. Kohlberg, On stochastic games with stationary optimal strategies,, Mathematics of Operations Research, 3 (1978), 104.  doi: 10.1287/moor.3.2.104.  Google Scholar

[2]

J. Bolte, S. Gaubert and G. Vigeral, Definable zero-sum stochastic games,, Mathematics of Operation Research, 40 (2015), 171.  doi: 10.1287/moor.2014.0666.  Google Scholar

[3]

G. Grimmett and D. Stirzaker, Probability and Random Processes,, Oxford University Press, (2001).   Google Scholar

[4]

R. Laraki, Explicit formulas for repeated games with absorbing states,, International Journal of Game Theory, 39 (2010), 53.  doi: 10.1007/s00182-009-0193-2.  Google Scholar

[5]

J.-F. Mertens, A. Neyman and D. Rosenberg, Absorbing games with compact action spaces,, Mathematics of Operation Research, 34 (2009), 257.  doi: 10.1287/moor.1080.0372.  Google Scholar

[6]

J.-F. Mertens, S. Sorin and S. Zamir, Repeated Games,, Cambridge University Press, (2015).   Google Scholar

[7]

A. Neyman, Stochastic games and nonexpansive maps,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 397.  doi: 10.1007/978-94-010-0189-2_26.  Google Scholar

[8]

D. Rosenberg and S. Sorin, An operator approach to zero-sum repeated games,, Israel Journal of Mathematics, 121 (2001), 221.  doi: 10.1007/BF02802505.  Google Scholar

[9]

S. Sorin, A First Course on Zero-SumRepeated Games,, Springer-Verlag, (2002).   Google Scholar

[10]

S. Sorin, The operator approach to zero-sum stochastic games,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 417.   Google Scholar

[11]

S. Sorin and G. Vigeral, Existence of the limit value of two person zero-sum discounted repeated games via comparison theorems,, Journal of Opimization Theory and Applications, 157 (2013), 564.  doi: 10.1007/s10957-012-0193-4.  Google Scholar

[12]

G. Vigeral, A zero-sum stochastic game with compact action sets and no asymptotic value,, Dynamic Games and Applications, 3 (2013), 172.  doi: 10.1007/s13235-013-0073-z.  Google Scholar

[13]

B. Ziliotto, Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture maxmin=$\lim v_n$,, to appear in Annals of Probability, (2013).   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[10]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

 Impact Factor: 

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]