April  2015, 2(2): 141-155. doi: 10.3934/jdg.2015.2.141

Smale strategies for network prisoner's dilemma games

1. 

Kashi Abhyankar Behrstock works in the nancial industry in New York, United States

2. 

Institut de Mathématiques, Université de Neuchâtel, Switzerland

3. 

Mathematics Department, University Wisconsin at Madison and University of California at Berkeley, United States

Received  March 2015 Revised  October 2015 Published  December 2015

Smale's approach [13] to the classical two-players repeated Prisoner's Dilemma game is revisited here for $N$-players and Network games in the framework of Blackwell's approachability, stochastic approximations and differential inclusions.
Citation: Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141
References:
[1]

K. Abhyankar, Smale Strategies for Prisoner's Dilemma Type Games,, Doctoral dissertation, (2001).

[2]

R. Axelrod, The Evolution of Cooperation,, Basic Book, (1984).

[3]

M. Benaïm, A dynamical system approach to stochastic approximation,, SIAM Journal on Optimization and Control, 34 (1996), 437. doi: 10.1137/S0363012993253534.

[4]

M. Benaïm, Dynamics of stochastic approximation algorithms,, Séminaire de Probabilités XXXIII, 1709 (1999), 1. doi: 10.1007/BFb0096509.

[5]

M. Benaïm and M. W. Hirsch, Asymptotic pseudotrajectories and chain recurrent flows, with applications,, J. Dynam. Differential Equations, 8 (1996), 141. doi: 10.1007/BF02218617.

[6]

M. Benaïm and M. Hirsch, Stochastic Adaptive Behavior for Prisoner's Dilemma,, Unpublished manuscript, (1996).

[7]

M. Benaïm, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions,, SIAM Journal on Optimization and Control, 44 (2005), 328. doi: 10.1137/S0363012904439301.

[8]

M. Berger, Géométrie, Vol 3 : Convexes et Polytopes, Polyèdres Réguliers, Aires et Volumes,, Fernand-Nathan, (1977).

[9]

D. Blackwell, An analog of the minmax theorem for vector payoffs,, Pacific Journal of Mathematics, 6 (1956), 1. doi: 10.2140/pjm.1956.6.1.

[10]

M. Faure and G. Roth, Stochastic approximations of set-valued dynamical systems: Convergence with positive probability to an attractor,, Mathematics of Operation Research, 35 (2010), 624. doi: 10.1287/moor.1100.0455.

[11]

G. Hardin, The tragedy of the commons,, Journal of Natural Resources Policy Research, (2009), 243. doi: 10.1080/19390450903037302.

[12]

V. Perchet, Approachability, regret and calibration: Implications and equivalences,, Journal of Dynamics and Games, 1 (2014), 181. doi: 10.3934/jdg.2014.1.181.

[13]

S. Smale, The prisoner's dilemma and dynamical systems associated to non-cooperative games,, Econometrica, 48 (1980), 1617. doi: 10.2307/1911925.

show all references

References:
[1]

K. Abhyankar, Smale Strategies for Prisoner's Dilemma Type Games,, Doctoral dissertation, (2001).

[2]

R. Axelrod, The Evolution of Cooperation,, Basic Book, (1984).

[3]

M. Benaïm, A dynamical system approach to stochastic approximation,, SIAM Journal on Optimization and Control, 34 (1996), 437. doi: 10.1137/S0363012993253534.

[4]

M. Benaïm, Dynamics of stochastic approximation algorithms,, Séminaire de Probabilités XXXIII, 1709 (1999), 1. doi: 10.1007/BFb0096509.

[5]

M. Benaïm and M. W. Hirsch, Asymptotic pseudotrajectories and chain recurrent flows, with applications,, J. Dynam. Differential Equations, 8 (1996), 141. doi: 10.1007/BF02218617.

[6]

M. Benaïm and M. Hirsch, Stochastic Adaptive Behavior for Prisoner's Dilemma,, Unpublished manuscript, (1996).

[7]

M. Benaïm, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions,, SIAM Journal on Optimization and Control, 44 (2005), 328. doi: 10.1137/S0363012904439301.

[8]

M. Berger, Géométrie, Vol 3 : Convexes et Polytopes, Polyèdres Réguliers, Aires et Volumes,, Fernand-Nathan, (1977).

[9]

D. Blackwell, An analog of the minmax theorem for vector payoffs,, Pacific Journal of Mathematics, 6 (1956), 1. doi: 10.2140/pjm.1956.6.1.

[10]

M. Faure and G. Roth, Stochastic approximations of set-valued dynamical systems: Convergence with positive probability to an attractor,, Mathematics of Operation Research, 35 (2010), 624. doi: 10.1287/moor.1100.0455.

[11]

G. Hardin, The tragedy of the commons,, Journal of Natural Resources Policy Research, (2009), 243. doi: 10.1080/19390450903037302.

[12]

V. Perchet, Approachability, regret and calibration: Implications and equivalences,, Journal of Dynamics and Games, 1 (2014), 181. doi: 10.3934/jdg.2014.1.181.

[13]

S. Smale, The prisoner's dilemma and dynamical systems associated to non-cooperative games,, Econometrica, 48 (1980), 1617. doi: 10.2307/1911925.

[1]

Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381

[2]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[3]

Ethan Akin. Good strategies for the Iterated Prisoner's Dilemma: Smale vs. Markov. Journal of Dynamics & Games, 2017, 4 (3) : 217-253. doi: 10.3934/jdg.2017014

[4]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[5]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[6]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[7]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[8]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[9]

Barak Shani, Eilon Solan. Strong approachability. Journal of Dynamics & Games, 2014, 1 (3) : 507-535. doi: 10.3934/jdg.2014.1.507

[10]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

[11]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[12]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[13]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

[14]

Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070

[15]

Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287

[16]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[17]

Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018

[18]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[19]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[20]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]