April  2015, 2(2): 157-185. doi: 10.3934/jdg.2015.2.157

Conservative and dissipative polymatrix replicators

1. 

Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil

2. 

Departamento de Matemática and CMAF-CIO, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edificio C6, Piso 2, 1749-016 Lisboa, Portugal

3. 

Departamento de Matemática, Instituto Superior de Economia e Gestão and CMAF-CIO, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edificio C6, Piso 2, 1749-016 Lisboa, Portugal

Received  July 2015 Revised  October 2015 Published  December 2015

In this paper we address a class of replicator dynamics, referred as polymatrix replicators, that contains well known classes of evolutionary game dynamics, such as the symmetric and asymmetric (or bimatrix) replicator equations, and some replicator equations for $n$-person games. Polymatrix replicators form a simple class of algebraic o.d.e.'s on prisms (products of simplexes), which describe the evolution of strategical behaviours within a population stratified in $p\geq 1$ social groups.
    In the 80's Raymond Redheffer et al. developed a theory on the class of stably dissipative Lotka-Volterra systems. This theory is built around a reduction algorithm that ``infers'' the localization of the system' s attractor in some affine subspace. It was later proven that the dynamics on the attractor of such systems is always embeddable in a Hamiltonian Lotka-Volterra system.
    In this paper we extend these results to polymatrix replicators.
Citation: Hassan Najafi Alishah, Pedro Duarte, Telmo Peixe. Conservative and dissipative polymatrix replicators. Journal of Dynamics & Games, 2015, 2 (2) : 157-185. doi: 10.3934/jdg.2015.2.157
References:
[1]

H. N. Alishah and P. Duarte, Hamiltonian evolutionary games,, Journal of Dynamics and Games, 2 (2015), 33. doi: 10.3934/jdg.2015.2.33.

[2]

H. N. Alishah, P. Duarte and T. Peixe, Asymptotic poincaré maps along the edges of polytopes,, preprint, ().

[3]

H. N. Alishah, P. Duarte and T. Peixe, Assymptotic poincaré maps for polymatrix games,, work in progress., ().

[4]

W. Brannath, Heteroclinic networks on the tetrahedron,, Nonlinearity, 7 (1994), 1367. doi: 10.1088/0951-7715/7/5/006.

[5]

L. Brenig, Complete factorisation and analytic solutions of generalized Lotka-Volterra equations,, Phys. Lett. A, 133 (1988), 378. doi: 10.1016/0375-9601(88)90920-6.

[6]

L. Brenig and A. Goriely, Universal canonical forms for time-continuous dynamical systems,, Phys. Rev. A, 40 (1989), 4119. doi: 10.1103/PhysRevA.40.4119.

[7]

L. A. Bunimovich and B. Z. Webb, Isospectral compression and other useful isospectral transformations of dynamical networks,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012). doi: 10.1063/1.4739253.

[8]

L. A. Bunimovich and B. Z. Webb, Isospectral Transformations,, Springer-Verlag, (2014). doi: 10.1007/978-1-4939-1375-6.

[9]

T. Chawanya, A new type of irregular motion in a class of game dynamics systems,, Progr. Theoret. Phys., 94 (1995), 163. doi: 10.1143/PTP.94.163.

[10]

T. Chawanya, Infinitely many attractors in game dynamics system,, Progr. Theoret. Phys., 95 (1996), 679. doi: 10.1143/PTP.95.679.

[11]

P. Duarte, Hamiltonian systems on polyhedra,, in Dynamics, 2 (2011), 257. doi: 10.1007/978-3-642-14788-3_21.

[12]

P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations,, J. Differential Equations, 149 (1998), 143. doi: 10.1006/jdeq.1998.3443.

[13]

P. Duarte and T. Peixe, Rank of stably dissipative graphs,, Linear Algebra Appl., 437 (2012), 2573. doi: 10.1016/j.laa.2012.06.015.

[14]

J. Eldering, Normally Hyperbolic Invariant Manifolds,, Atlantis Press, (2013). doi: 10.2991/978-94-6239-003-4.

[15]

Z. M. Guo, Z. M. Zhou and S. S. Wang, Volterra multipliers of $3\times 3$ real matrices,, Math. Practice Theory, 1 (1995), 47. doi: 10.1016/j.laa.2012.06.015.

[16]

B. Hernández-Bermejo and V. Fairén, Lotka-Volterra representation of general nonlinear systems,, Math. Biosci., 140 (1997), 1. doi: 10.1016/S0025-5564(96)00131-9.

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Springer-Verlag, (1977).

[18]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets,, SIAM J. Math. Anal., 13 (1982), 167. doi: 10.1137/0513013.

[19]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. {II}. Convergence almost everywhere,, SIAM J. Math. Anal., 16 (1985), 423. doi: 10.1137/0516030.

[20]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species,, Nonlinearity, 1 (1988), 51. doi: 10.1088/0951-7715/1/1/003.

[21]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three-dimensional Lotka-Volterra equations,, Appl. Math. Lett., 7 (1994), 65. doi: 10.1016/0893-9659(94)90095-7.

[22]

J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation,, Nonlinear Anal., 5 (1981), 1003. doi: 10.1016/0362-546X(81)90059-6.

[23]

J. Hofbauer, Heteroclinic cycles on the simplex,, in Proceedings of the Eleventh International Conference on Nonlinear Oscillations (Budapest János Bolyai Math. Soc., (1987), 828.

[24]

J. Hofbauer, Heteroclinic cycles in ecological differential equations,, Tatra Mt. Math. Publ., 4 (1994), 105.

[25]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179.

[26]

J. T. Howson, Jr., Equilibria of polymatrix games,, Management Sci., 18 (): 312.

[27]

W. Jansen, A permanence theorem for replicator and Lotka-Volterra systems,, J. Math. Biol., 25 (1987), 411. doi: 10.1007/BF00277165.

[28]

G. Karakostas, Global stability in job systems,, J. Math. Anal. Appl., 131 (1988), 85. doi: 10.1016/0022-247X(88)90191-6.

[29]

V. Kirk and M. Silber, A competition between heteroclinic cycles,, Nonlinearity, 7 (1994), 1605. doi: 10.1088/0951-7715/7/6/005.

[30]

J. P. LaSalle, Stability theory for ordinary differential equations,, J. Differential Equations, 4 (1968), 57. doi: 10.1016/0022-0396(68)90048-X.

[31]

A. J. Lotka, Elements of Mathematical Biology. (Formerly Published Under the Title Elements of Physical Biology),, Dover Publications, (1958).

[32]

J. M. Smith, The logic of animal conflicts,, Nature, 246 (1973), 15. doi: 10.1038/246015a0.

[33]

G. Palm, Evolutionary stable strategies and game dynamics for $n$-person games,, J. Math. Biol., 19 (1984), 329. doi: 10.1007/BF00277103.

[34]

M. Plank, Some qualitative differences between the replicator dynamics of two player and $n$ player games,, in Proceedings of the Second World Congress of Nonlinear Analysts, 30 (1997), 1411. doi: 10.1016/S0362-546X(97)00202-2.

[35]

L. G. Quintas, A note on polymatrix games,, Internat. J. Game Theory, 18 (1989), 261. doi: 10.1007/BF01254291.

[36]

R. Redheffer, Volterra multipliers. I, II,, SIAM J. Algebraic Discrete Methods, 6 (1985), 592. doi: 10.1137/0606059.

[37]

R. Redheffer, A new class of Volterra differential equations for which the solutions are globally asymptotically stable,, J. Differential Equations, 82 (1989), 251. doi: 10.1016/0022-0396(89)90133-2.

[38]

R. Redheffer and W. Walter, Solution of the stability problem for a class of generalized Volterra prey-predator systems,, J. Differential Equations, 52 (1984), 245. doi: 10.1016/0022-0396(84)90179-7.

[39]

R. Redheffer and Z. M. Zhou, Global asymptotic stability for a class of many-variable Volterra prey-predator systems,, Nonlinear Anal., 5 (1981), 1309. doi: 10.1016/0362-546X(81)90108-5.

[40]

R. Redheffer and Z. M. Zhou, A class of matrices connected with Volterra prey-predator equations,, SIAM J. Algebraic Discrete Methods, 3 (1982), 122. doi: 10.1137/0603012.

[41]

K. Ritzberger and J. Weibull, Evolutionary selection in normal-form games,, Econometrica, 63 (1995), 1371. doi: 10.2307/2171774.

[42]

T. M. Rocha Filho, I. M. Gléria and A. Figueiredo, A novel approach for the stability problem in non-linear dynamical systems,, Comput. Phys. Comm., 155 (2003), 21. doi: 10.1016/S0010-4655(03)00295-9.

[43]

P. Schuster and K. Sigmund, Coyness, philandering and stable strategies,, Animal Behaviour, 29 (1981), 186. doi: 10.1016/S0003-3472(81)80165-0.

[44]

P. Schuster, K. Sigmund and R. Wolff, Self-regulation of behaviour in animal societies. II. Games between two populations without self-interaction,, Biol. Cybernet., 40 (1981), 9. doi: 10.1007/BF00326676.

[45]

M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987). doi: 10.1007/978-1-4757-1947-5.

[46]

G. Karakostas, On the differential equations of species in competition,, J. Math. Biol., 3 (1976), 5. doi: 10.1007/BF00307854.

[47]

H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species,, SIAM J. Appl. Math., 46 (1986), 368. doi: 10.1137/0146025.

[48]

L. B. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynamics,, Math. Biosci., 40 (1978), 145. doi: 10.1016/0025-5564(78)90077-9.

[49]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits,, SIAM J. Appl. Math., 58 (1998), 227. doi: 10.1137/S0036139995294767.

[50]

V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la vie,, Éditions Jacques Gabay, (1990).

[51]

E. B. Yanovskaya, Equilibrium situations in multi-matrix games (in russian),, Litovsk. Mat. Sb., 8 (1968), 381.

[52]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems,, Dynam. Stability Systems, 8 (1993), 189. doi: 10.1080/02681119308806158.

[53]

M. L. Zeeman, Extinction in competitive Lotka-Volterra systems,, Proc. Amer. Math. Soc., 123 (1995), 87. doi: 10.1090/S0002-9939-1995-1264833-2.

[54]

X. Zhao and J. Luo, Classification and dynamics of stably dissipative lotka-volterra systems,, International Journal of Non-Linear Mechanics, 45 (2010), 603. doi: 10.1016/j.ijnonlinmec.2009.07.006.

show all references

References:
[1]

H. N. Alishah and P. Duarte, Hamiltonian evolutionary games,, Journal of Dynamics and Games, 2 (2015), 33. doi: 10.3934/jdg.2015.2.33.

[2]

H. N. Alishah, P. Duarte and T. Peixe, Asymptotic poincaré maps along the edges of polytopes,, preprint, ().

[3]

H. N. Alishah, P. Duarte and T. Peixe, Assymptotic poincaré maps for polymatrix games,, work in progress., ().

[4]

W. Brannath, Heteroclinic networks on the tetrahedron,, Nonlinearity, 7 (1994), 1367. doi: 10.1088/0951-7715/7/5/006.

[5]

L. Brenig, Complete factorisation and analytic solutions of generalized Lotka-Volterra equations,, Phys. Lett. A, 133 (1988), 378. doi: 10.1016/0375-9601(88)90920-6.

[6]

L. Brenig and A. Goriely, Universal canonical forms for time-continuous dynamical systems,, Phys. Rev. A, 40 (1989), 4119. doi: 10.1103/PhysRevA.40.4119.

[7]

L. A. Bunimovich and B. Z. Webb, Isospectral compression and other useful isospectral transformations of dynamical networks,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012). doi: 10.1063/1.4739253.

[8]

L. A. Bunimovich and B. Z. Webb, Isospectral Transformations,, Springer-Verlag, (2014). doi: 10.1007/978-1-4939-1375-6.

[9]

T. Chawanya, A new type of irregular motion in a class of game dynamics systems,, Progr. Theoret. Phys., 94 (1995), 163. doi: 10.1143/PTP.94.163.

[10]

T. Chawanya, Infinitely many attractors in game dynamics system,, Progr. Theoret. Phys., 95 (1996), 679. doi: 10.1143/PTP.95.679.

[11]

P. Duarte, Hamiltonian systems on polyhedra,, in Dynamics, 2 (2011), 257. doi: 10.1007/978-3-642-14788-3_21.

[12]

P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations,, J. Differential Equations, 149 (1998), 143. doi: 10.1006/jdeq.1998.3443.

[13]

P. Duarte and T. Peixe, Rank of stably dissipative graphs,, Linear Algebra Appl., 437 (2012), 2573. doi: 10.1016/j.laa.2012.06.015.

[14]

J. Eldering, Normally Hyperbolic Invariant Manifolds,, Atlantis Press, (2013). doi: 10.2991/978-94-6239-003-4.

[15]

Z. M. Guo, Z. M. Zhou and S. S. Wang, Volterra multipliers of $3\times 3$ real matrices,, Math. Practice Theory, 1 (1995), 47. doi: 10.1016/j.laa.2012.06.015.

[16]

B. Hernández-Bermejo and V. Fairén, Lotka-Volterra representation of general nonlinear systems,, Math. Biosci., 140 (1997), 1. doi: 10.1016/S0025-5564(96)00131-9.

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Springer-Verlag, (1977).

[18]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets,, SIAM J. Math. Anal., 13 (1982), 167. doi: 10.1137/0513013.

[19]

M. W. Hirsch, Systems of differential equations that are competitive or cooperative. {II}. Convergence almost everywhere,, SIAM J. Math. Anal., 16 (1985), 423. doi: 10.1137/0516030.

[20]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species,, Nonlinearity, 1 (1988), 51. doi: 10.1088/0951-7715/1/1/003.

[21]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three-dimensional Lotka-Volterra equations,, Appl. Math. Lett., 7 (1994), 65. doi: 10.1016/0893-9659(94)90095-7.

[22]

J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation,, Nonlinear Anal., 5 (1981), 1003. doi: 10.1016/0362-546X(81)90059-6.

[23]

J. Hofbauer, Heteroclinic cycles on the simplex,, in Proceedings of the Eleventh International Conference on Nonlinear Oscillations (Budapest János Bolyai Math. Soc., (1987), 828.

[24]

J. Hofbauer, Heteroclinic cycles in ecological differential equations,, Tatra Mt. Math. Publ., 4 (1994), 105.

[25]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179.

[26]

J. T. Howson, Jr., Equilibria of polymatrix games,, Management Sci., 18 (): 312.

[27]

W. Jansen, A permanence theorem for replicator and Lotka-Volterra systems,, J. Math. Biol., 25 (1987), 411. doi: 10.1007/BF00277165.

[28]

G. Karakostas, Global stability in job systems,, J. Math. Anal. Appl., 131 (1988), 85. doi: 10.1016/0022-247X(88)90191-6.

[29]

V. Kirk and M. Silber, A competition between heteroclinic cycles,, Nonlinearity, 7 (1994), 1605. doi: 10.1088/0951-7715/7/6/005.

[30]

J. P. LaSalle, Stability theory for ordinary differential equations,, J. Differential Equations, 4 (1968), 57. doi: 10.1016/0022-0396(68)90048-X.

[31]

A. J. Lotka, Elements of Mathematical Biology. (Formerly Published Under the Title Elements of Physical Biology),, Dover Publications, (1958).

[32]

J. M. Smith, The logic of animal conflicts,, Nature, 246 (1973), 15. doi: 10.1038/246015a0.

[33]

G. Palm, Evolutionary stable strategies and game dynamics for $n$-person games,, J. Math. Biol., 19 (1984), 329. doi: 10.1007/BF00277103.

[34]

M. Plank, Some qualitative differences between the replicator dynamics of two player and $n$ player games,, in Proceedings of the Second World Congress of Nonlinear Analysts, 30 (1997), 1411. doi: 10.1016/S0362-546X(97)00202-2.

[35]

L. G. Quintas, A note on polymatrix games,, Internat. J. Game Theory, 18 (1989), 261. doi: 10.1007/BF01254291.

[36]

R. Redheffer, Volterra multipliers. I, II,, SIAM J. Algebraic Discrete Methods, 6 (1985), 592. doi: 10.1137/0606059.

[37]

R. Redheffer, A new class of Volterra differential equations for which the solutions are globally asymptotically stable,, J. Differential Equations, 82 (1989), 251. doi: 10.1016/0022-0396(89)90133-2.

[38]

R. Redheffer and W. Walter, Solution of the stability problem for a class of generalized Volterra prey-predator systems,, J. Differential Equations, 52 (1984), 245. doi: 10.1016/0022-0396(84)90179-7.

[39]

R. Redheffer and Z. M. Zhou, Global asymptotic stability for a class of many-variable Volterra prey-predator systems,, Nonlinear Anal., 5 (1981), 1309. doi: 10.1016/0362-546X(81)90108-5.

[40]

R. Redheffer and Z. M. Zhou, A class of matrices connected with Volterra prey-predator equations,, SIAM J. Algebraic Discrete Methods, 3 (1982), 122. doi: 10.1137/0603012.

[41]

K. Ritzberger and J. Weibull, Evolutionary selection in normal-form games,, Econometrica, 63 (1995), 1371. doi: 10.2307/2171774.

[42]

T. M. Rocha Filho, I. M. Gléria and A. Figueiredo, A novel approach for the stability problem in non-linear dynamical systems,, Comput. Phys. Comm., 155 (2003), 21. doi: 10.1016/S0010-4655(03)00295-9.

[43]

P. Schuster and K. Sigmund, Coyness, philandering and stable strategies,, Animal Behaviour, 29 (1981), 186. doi: 10.1016/S0003-3472(81)80165-0.

[44]

P. Schuster, K. Sigmund and R. Wolff, Self-regulation of behaviour in animal societies. II. Games between two populations without self-interaction,, Biol. Cybernet., 40 (1981), 9. doi: 10.1007/BF00326676.

[45]

M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987). doi: 10.1007/978-1-4757-1947-5.

[46]

G. Karakostas, On the differential equations of species in competition,, J. Math. Biol., 3 (1976), 5. doi: 10.1007/BF00307854.

[47]

H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species,, SIAM J. Appl. Math., 46 (1986), 368. doi: 10.1137/0146025.

[48]

L. B. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynamics,, Math. Biosci., 40 (1978), 145. doi: 10.1016/0025-5564(78)90077-9.

[49]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits,, SIAM J. Appl. Math., 58 (1998), 227. doi: 10.1137/S0036139995294767.

[50]

V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la vie,, Éditions Jacques Gabay, (1990).

[51]

E. B. Yanovskaya, Equilibrium situations in multi-matrix games (in russian),, Litovsk. Mat. Sb., 8 (1968), 381.

[52]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems,, Dynam. Stability Systems, 8 (1993), 189. doi: 10.1080/02681119308806158.

[53]

M. L. Zeeman, Extinction in competitive Lotka-Volterra systems,, Proc. Amer. Math. Soc., 123 (1995), 87. doi: 10.1090/S0002-9939-1995-1264833-2.

[54]

X. Zhao and J. Luo, Classification and dynamics of stably dissipative lotka-volterra systems,, International Journal of Non-Linear Mechanics, 45 (2010), 603. doi: 10.1016/j.ijnonlinmec.2009.07.006.

[1]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[2]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[3]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[4]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[5]

Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1

[6]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[7]

Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347

[8]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291

[9]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[10]

Norimichi Hirano, Wieslaw Krawcewicz, Haibo Ruan. Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 709-735. doi: 10.3934/dcds.2011.30.709

[11]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[12]

C. M. Evans, G. L. Findley. Analytic solutions to a class of two-dimensional Lotka-Volterra dynamical systems. Conference Publications, 2001, 2001 (Special) : 137-142. doi: 10.3934/proc.2001.2001.137

[13]

Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

[14]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[15]

Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103

[16]

Francisco Montes de Oca, Liliana Pérez. Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2663-2690. doi: 10.3934/dcdsb.2015.20.2663

[17]

Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175

[18]

P. Auger, N. H. Du, N. T. Hieu. Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences & Engineering, 2009, 6 (4) : 683-700. doi: 10.3934/mbe.2009.6.683

[19]

Yoshiaki Muroya, Teresa Faria. Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3089-3114. doi: 10.3934/dcdsb.2018302

[20]

Gunter Neumann, Stefan Schuster. Modeling the rock - scissors - paper game between bacteriocin producing bacteria by Lotka-Volterra equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 207-228. doi: 10.3934/dcdsb.2007.8.207

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]