April  2015, 2(2): 187-199. doi: 10.3934/jdg.2015.2.187

On the hierarchical optimal control of a chain of distributed systems

1. 

Department of Mechanical and Aerospace Engineering, University of Florida - REEF, 1350 N. Poquito Rd, Shalimar, FL 32579, United States

2. 

Munitions Directorate, Air Force Research Laboratory, 101 West Eglin Blvd, Eglin AFB, FL 32542, United States

Received  September 2015 Revised  November 2015 Published  December 2015

We consider a chain of distributed systems governed by a degenerate parabolic equation, which satisfies a weak Hörmander type condition, with a control distributed over an open subdomain. In particular, we consider two objectives that we would like to accomplish. The first one being of a controllability type that consists of guaranteeing the terminal state to reach a target set starting from an initial condition; while the second one is keeping the state trajectory of the overall system close to a given reference trajectory over a finite time interval. We introduce the following framework. First, we partition the control subdomain into two disjoint open subdomains that are compatible with the strategy subspaces of the leader and that of the follower, respectively. Then, using the notion of Stackelberg's optimization (which is a hierarchical optimization framework), we provide a new result on the existence of optimal control strategies for such an optimization problem, where the follower (which corresponds to the second criterion) is required to respond optimally, in the sense of best-response correspondence to the strategy of the leader (which is associated to the controllability-type problem) so as to achieve the overall objectives. Finally, we remark on the implication of our result in assessing the influence of the target set on the strategy of the follower with respect to the direction of leader-follower (and vice-versa) information flow.
Citation: Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics and Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187
References:
[1]

F. D. Araruna, E. Fernández-Cara and M. C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations, ESAIM Control Optim. Calc. Var., 21 (2015), 835-856. doi: 10.1051/cocv/2014052.

[2]

E. Barucci, S. Polidoro and V. Vespri, Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., 11 (2001), 475-497. doi: 10.1142/S0218202501000945.

[3]

G. K. Befekadu and P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Contr. Optim., 53 (2015), 2297-2318. doi: 10.1137/140990322.

[4]

T. Bodineau and L. Lefevere, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats, J. Stat. Phys., 133 (2008), 1-27. doi: 10.1007/s10955-008-9601-4.

[5]

F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, J. Funct. Anal., 259 (2010), 1577-1630. doi: 10.1016/j.jfa.2010.05.002.

[6]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, North Holland, 1976.

[7]

D. L. Elliott, Diffusions on manifolds arising from controllable systems, in Geometric Methods in System Theory, (eds. D. Q. Mayne and R.W. Brockett), Reidel Publ. Co., Dordrecht, Holland, 3 (1973), 285-294. doi: 10.1007/978-94-010-2675-8_19.

[8]

F. Guillén-González, F. Marques-Lopes and M. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations, Proc. Amer. Math. Soc., 141 (2013), 1759-1773. doi: 10.1090/S0002-9939-2012-11459-5.

[9]

L. Hörmander, Hypoelliptic second order differential operators, Acta Math., 119 (1967), 147-171. doi: 10.1007/BF02392081.

[10]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z. Wahrscheinlichkeitstheor. Verw. Geb., 30 (1974), 253-254. doi: 10.1007/BF00533476.

[11]

G. Leitmann, On generalized Stackelberg strategies, J. Optim. Theor. Appl., 26 (1978), 637-643. doi: 10.1007/BF00933155.

[12]

J. L. Lions, Some remarks on Stackelberg's optimization, Math. Models Methods Appl. Sci., 4 (1994), 477-487. doi: 10.1142/S0218202594000273.

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68. doi: 10.1137/1030001.

[14]

R. T. Rockafellar, Duality and stability in extremum problems involving convex functions, Pacific J. Math., 21 (1967), 167-187. doi: 10.2140/pjm.1967.21.167.

[15]

J. C. Saut and B. Scheurer, Unique continuation for evolution equations, J. Diff. Equ., 66 (1987), 118-137. doi: 10.1016/0022-0396(87)90043-X.

[16]

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, Ser. Adv. Math. Appl. Sci., vol. 17, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. doi: 10.1142/9789814354110.

[17]

H. Von Stackelberg, Marktform und Gleichgewicht, Springer, Berlin, Germany, 1934.

[18]

D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math., 25 (1972), 651-713. doi: 10.1002/cpa.3160250603.

[19]

D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-28999-2.

[20]

H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Diff. Equ., 12 (1972), 95-116. doi: 10.1016/0022-0396(72)90007-1.

show all references

References:
[1]

F. D. Araruna, E. Fernández-Cara and M. C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations, ESAIM Control Optim. Calc. Var., 21 (2015), 835-856. doi: 10.1051/cocv/2014052.

[2]

E. Barucci, S. Polidoro and V. Vespri, Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., 11 (2001), 475-497. doi: 10.1142/S0218202501000945.

[3]

G. K. Befekadu and P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Contr. Optim., 53 (2015), 2297-2318. doi: 10.1137/140990322.

[4]

T. Bodineau and L. Lefevere, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats, J. Stat. Phys., 133 (2008), 1-27. doi: 10.1007/s10955-008-9601-4.

[5]

F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, J. Funct. Anal., 259 (2010), 1577-1630. doi: 10.1016/j.jfa.2010.05.002.

[6]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, North Holland, 1976.

[7]

D. L. Elliott, Diffusions on manifolds arising from controllable systems, in Geometric Methods in System Theory, (eds. D. Q. Mayne and R.W. Brockett), Reidel Publ. Co., Dordrecht, Holland, 3 (1973), 285-294. doi: 10.1007/978-94-010-2675-8_19.

[8]

F. Guillén-González, F. Marques-Lopes and M. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations, Proc. Amer. Math. Soc., 141 (2013), 1759-1773. doi: 10.1090/S0002-9939-2012-11459-5.

[9]

L. Hörmander, Hypoelliptic second order differential operators, Acta Math., 119 (1967), 147-171. doi: 10.1007/BF02392081.

[10]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z. Wahrscheinlichkeitstheor. Verw. Geb., 30 (1974), 253-254. doi: 10.1007/BF00533476.

[11]

G. Leitmann, On generalized Stackelberg strategies, J. Optim. Theor. Appl., 26 (1978), 637-643. doi: 10.1007/BF00933155.

[12]

J. L. Lions, Some remarks on Stackelberg's optimization, Math. Models Methods Appl. Sci., 4 (1994), 477-487. doi: 10.1142/S0218202594000273.

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68. doi: 10.1137/1030001.

[14]

R. T. Rockafellar, Duality and stability in extremum problems involving convex functions, Pacific J. Math., 21 (1967), 167-187. doi: 10.2140/pjm.1967.21.167.

[15]

J. C. Saut and B. Scheurer, Unique continuation for evolution equations, J. Diff. Equ., 66 (1987), 118-137. doi: 10.1016/0022-0396(87)90043-X.

[16]

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, Ser. Adv. Math. Appl. Sci., vol. 17, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. doi: 10.1142/9789814354110.

[17]

H. Von Stackelberg, Marktform und Gleichgewicht, Springer, Berlin, Germany, 1934.

[18]

D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math., 25 (1972), 651-713. doi: 10.1002/cpa.3160250603.

[19]

D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-28999-2.

[20]

H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Diff. Equ., 12 (1972), 95-116. doi: 10.1016/0022-0396(72)90007-1.

[1]

Brooke L. Hollingsworth, R.E. Showalter. Semilinear degenerate parabolic systems and distributed capacitance models. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 59-76. doi: 10.3934/dcds.1995.1.59

[2]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component. Mathematical Control and Related Fields, 2020, 10 (3) : 643-667. doi: 10.3934/mcrf.2020014

[3]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062

[4]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[5]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 555-566. doi: 10.3934/naco.2020055

[6]

Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576

[7]

Brahim Allal, Genni Fragnelli, Jawad Salhi*. Controllability for degenerate/singular parabolic systems involving memory terms. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022071

[8]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force. Evolution Equations and Control Theory, 2021, 10 (3) : 545-573. doi: 10.3934/eect.2020080

[9]

Tomás Caraballo Garrido, Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Zgurovsky. Preface to the special issue "Dynamics and control in distributed systems: Dedicated to the memory of Valery S. Melnik (1952-2007)". Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : i-v. doi: 10.3934/dcdsb.20193i

[10]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[11]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[12]

Yuxuan Chen, Jiangbo Han. Global existence and nonexistence for a class of finitely degenerate coupled parabolic systems with high initial energy level. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4179-4200. doi: 10.3934/dcdss.2021109

[13]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[14]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

[15]

Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737

[16]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[17]

Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399

[18]

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275

[19]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[20]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]