April  2015, 2(2): 187-199. doi: 10.3934/jdg.2015.2.187

On the hierarchical optimal control of a chain of distributed systems

1. 

Department of Mechanical and Aerospace Engineering, University of Florida - REEF, 1350 N. Poquito Rd, Shalimar, FL 32579, United States

2. 

Munitions Directorate, Air Force Research Laboratory, 101 West Eglin Blvd, Eglin AFB, FL 32542, United States

Received  September 2015 Revised  November 2015 Published  December 2015

We consider a chain of distributed systems governed by a degenerate parabolic equation, which satisfies a weak Hörmander type condition, with a control distributed over an open subdomain. In particular, we consider two objectives that we would like to accomplish. The first one being of a controllability type that consists of guaranteeing the terminal state to reach a target set starting from an initial condition; while the second one is keeping the state trajectory of the overall system close to a given reference trajectory over a finite time interval. We introduce the following framework. First, we partition the control subdomain into two disjoint open subdomains that are compatible with the strategy subspaces of the leader and that of the follower, respectively. Then, using the notion of Stackelberg's optimization (which is a hierarchical optimization framework), we provide a new result on the existence of optimal control strategies for such an optimization problem, where the follower (which corresponds to the second criterion) is required to respond optimally, in the sense of best-response correspondence to the strategy of the leader (which is associated to the controllability-type problem) so as to achieve the overall objectives. Finally, we remark on the implication of our result in assessing the influence of the target set on the strategy of the follower with respect to the direction of leader-follower (and vice-versa) information flow.
Citation: Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics & Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187
References:
[1]

F. D. Araruna, E. Fernández-Cara and M. C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations,, ESAIM Control Optim. Calc. Var., 21 (2015), 835.  doi: 10.1051/cocv/2014052.  Google Scholar

[2]

E. Barucci, S. Polidoro and V. Vespri, Some results on partial differential equations and Asian options,, Math. Models Methods Appl. Sci., 11 (2001), 475.  doi: 10.1142/S0218202501000945.  Google Scholar

[3]

G. K. Befekadu and P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems,, SIAM J. Contr. Optim., 53 (2015), 2297.  doi: 10.1137/140990322.  Google Scholar

[4]

T. Bodineau and L. Lefevere, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats,, J. Stat. Phys., 133 (2008), 1.  doi: 10.1007/s10955-008-9601-4.  Google Scholar

[5]

F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations,, J. Funct. Anal., 259 (2010), 1577.  doi: 10.1016/j.jfa.2010.05.002.  Google Scholar

[6]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems,, North Holland, (1976).   Google Scholar

[7]

D. L. Elliott, Diffusions on manifolds arising from controllable systems,, in Geometric Methods in System Theory, 3 (1973), 285.  doi: 10.1007/978-94-010-2675-8_19.  Google Scholar

[8]

F. Guillén-González, F. Marques-Lopes and M. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations,, Proc. Amer. Math. Soc., 141 (2013), 1759.  doi: 10.1090/S0002-9939-2012-11459-5.  Google Scholar

[9]

L. Hörmander, Hypoelliptic second order differential operators,, Acta Math., 119 (1967), 147.  doi: 10.1007/BF02392081.  Google Scholar

[10]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization,, Z. Wahrscheinlichkeitstheor. Verw. Geb., 30 (1974), 253.  doi: 10.1007/BF00533476.  Google Scholar

[11]

G. Leitmann, On generalized Stackelberg strategies,, J. Optim. Theor. Appl., 26 (1978), 637.  doi: 10.1007/BF00933155.  Google Scholar

[12]

J. L. Lions, Some remarks on Stackelberg's optimization,, Math. Models Methods Appl. Sci., 4 (1994), 477.  doi: 10.1142/S0218202594000273.  Google Scholar

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[14]

R. T. Rockafellar, Duality and stability in extremum problems involving convex functions,, Pacific J. Math., 21 (1967), 167.  doi: 10.2140/pjm.1967.21.167.  Google Scholar

[15]

J. C. Saut and B. Scheurer, Unique continuation for evolution equations,, J. Diff. Equ., 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[16]

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions,, Ser. Adv. Math. Appl. Sci., (1994).  doi: 10.1142/9789814354110.  Google Scholar

[17]

H. Von Stackelberg, Marktform und Gleichgewicht,, Springer, (1934).   Google Scholar

[18]

D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions,, Comm. Pure Appl. Math., 25 (1972), 651.  doi: 10.1002/cpa.3160250603.  Google Scholar

[19]

D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes,, Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag, (1997).  doi: 10.1007/3-540-28999-2.  Google Scholar

[20]

H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems,, J. Diff. Equ., 12 (1972), 95.  doi: 10.1016/0022-0396(72)90007-1.  Google Scholar

show all references

References:
[1]

F. D. Araruna, E. Fernández-Cara and M. C. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations,, ESAIM Control Optim. Calc. Var., 21 (2015), 835.  doi: 10.1051/cocv/2014052.  Google Scholar

[2]

E. Barucci, S. Polidoro and V. Vespri, Some results on partial differential equations and Asian options,, Math. Models Methods Appl. Sci., 11 (2001), 475.  doi: 10.1142/S0218202501000945.  Google Scholar

[3]

G. K. Befekadu and P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems,, SIAM J. Contr. Optim., 53 (2015), 2297.  doi: 10.1137/140990322.  Google Scholar

[4]

T. Bodineau and L. Lefevere, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats,, J. Stat. Phys., 133 (2008), 1.  doi: 10.1007/s10955-008-9601-4.  Google Scholar

[5]

F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations,, J. Funct. Anal., 259 (2010), 1577.  doi: 10.1016/j.jfa.2010.05.002.  Google Scholar

[6]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems,, North Holland, (1976).   Google Scholar

[7]

D. L. Elliott, Diffusions on manifolds arising from controllable systems,, in Geometric Methods in System Theory, 3 (1973), 285.  doi: 10.1007/978-94-010-2675-8_19.  Google Scholar

[8]

F. Guillén-González, F. Marques-Lopes and M. Rojas-Medar, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations,, Proc. Amer. Math. Soc., 141 (2013), 1759.  doi: 10.1090/S0002-9939-2012-11459-5.  Google Scholar

[9]

L. Hörmander, Hypoelliptic second order differential operators,, Acta Math., 119 (1967), 147.  doi: 10.1007/BF02392081.  Google Scholar

[10]

K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization,, Z. Wahrscheinlichkeitstheor. Verw. Geb., 30 (1974), 253.  doi: 10.1007/BF00533476.  Google Scholar

[11]

G. Leitmann, On generalized Stackelberg strategies,, J. Optim. Theor. Appl., 26 (1978), 637.  doi: 10.1007/BF00933155.  Google Scholar

[12]

J. L. Lions, Some remarks on Stackelberg's optimization,, Math. Models Methods Appl. Sci., 4 (1994), 477.  doi: 10.1142/S0218202594000273.  Google Scholar

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Rev., 30 (1988), 1.  doi: 10.1137/1030001.  Google Scholar

[14]

R. T. Rockafellar, Duality and stability in extremum problems involving convex functions,, Pacific J. Math., 21 (1967), 167.  doi: 10.2140/pjm.1967.21.167.  Google Scholar

[15]

J. C. Saut and B. Scheurer, Unique continuation for evolution equations,, J. Diff. Equ., 66 (1987), 118.  doi: 10.1016/0022-0396(87)90043-X.  Google Scholar

[16]

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions,, Ser. Adv. Math. Appl. Sci., (1994).  doi: 10.1142/9789814354110.  Google Scholar

[17]

H. Von Stackelberg, Marktform und Gleichgewicht,, Springer, (1934).   Google Scholar

[18]

D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions,, Comm. Pure Appl. Math., 25 (1972), 651.  doi: 10.1002/cpa.3160250603.  Google Scholar

[19]

D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes,, Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag, (1997).  doi: 10.1007/3-540-28999-2.  Google Scholar

[20]

H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems,, J. Diff. Equ., 12 (1972), 95.  doi: 10.1016/0022-0396(72)90007-1.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[20]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]