January  2015, 2(1): 33-49. doi: 10.3934/jdg.2015.2.33

Hamiltonian evolutionary games

1. 

Departamento de Matemática and CAMGSD, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

2. 

Departamento de Matemática and CMAF, Faculdade de Ciências,Universidade de Lisboa, Campo Grande, Edi ficio C6, Piso 2, 1749-016 Lisboa, Portugal

Received  May 2014 Revised  February 2015 Published  June 2015

We introduce a class of o.d.e.'s that generalizes to polymatrix games the replicator equations on symmetric and asymmetric games. We also introduce a new class of Poisson structures on the phase space of these systems, and characterize the corresponding subclass of Hamiltonian polymatrix replicator systems. This extends known results for symmetric and asymmetric replicator systems.
Citation: Hassan Najafi Alishah, Pedro Duarte. Hamiltonian evolutionary games. Journal of Dynamics & Games, 2015, 2 (1) : 33-49. doi: 10.3934/jdg.2015.2.33
References:
[1]

E. Akin and V. Losert, Evolutionary dynamics of zero-sum games,, J. Math. Biol., 20 (1984), 231.  doi: 10.1007/BF00275987.  Google Scholar

[2]

P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations,, J. Differential Equations, 149 (1998), 143.  doi: 10.1006/jdeq.1998.3443.  Google Scholar

[3]

J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms,, Progress in Mathematics, (2005).   Google Scholar

[4]

I. Eshel and E. Akin, Coevolutionary instability and mixed Nash solutions,, J. Math. Biol., 18 (1983), 123.  doi: 10.1007/BF00280661.  Google Scholar

[5]

R. L. Fernandes, J.-P. Oretga and T. S. Ratiu, The momentum map in Poisson geometry,, Amer. J. Math., 131 (2009), 1261.  doi: 10.1353/ajm.0.0068.  Google Scholar

[6]

J. Hofbauer, Evolutionary dynamics for bimatrix games: A Hamiltonian system?,, J. Math. Biol., 34 (1996), 675.  doi: 10.1007/BF02409754.  Google Scholar

[7]

J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation,, Nonlinear Anal., 5 (1981), 1003.  doi: 10.1016/0362-546X(81)90059-6.  Google Scholar

[8]

J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics,, Cambridge University Press, (1998).  doi: 10.1017/CBO9781139173179.  Google Scholar

[9]

J. T. Howson, Jr., Equilibria of polymatrix games,, Management Sci., 18 (): 312.   Google Scholar

[10]

J. Maynard Smith, Evolution and the Theory of Games,, Cambridge University Press, (1982).   Google Scholar

[11]

J. Nash, Non-cooperative games,, Ann. of Math. (2), 54 (1951), 286.  doi: 10.2307/1969529.  Google Scholar

[12]

G. Palm, Evolutionary stable strategies and game dynamics for $n$-person games,, J. Math. Biol., 19 (1984), 329.  doi: 10.1007/BF00277103.  Google Scholar

[13]

A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie algebras. Vol. I,, Birkhäuser Verlag, (1990).  doi: 10.1007/978-3-0348-9257-5.  Google Scholar

[14]

M. Plank, Bi-Hamiltonian systems and Lotka-Volterra equations: A three-dimensional classification,, Nonlinearity, 9 (1996), 887.  doi: 10.1088/0951-7715/9/4/004.  Google Scholar

[15]

M. Plank, Hamiltonian structures for the $n$-dimensional Lotka-Volterra equations,, J. Math. Phys., 36 (1995), 3520.  doi: 10.1063/1.530978.  Google Scholar

[16]

M. Plank, Some qualitative differences between the replicator dynamics of two player and $n$ player games,, Nonlinear Anal., 30 (1997), 1411.  doi: 10.1016/S0362-546X(97)00202-2.  Google Scholar

[17]

R. Redheffer, A new class of Volterra differential equations for which the solutions are globally asymptotically stable,, J. Differential Equations, 82 (1989), 251.  doi: 10.1016/0022-0396(89)90133-2.  Google Scholar

[18]

R. Redheffer and W. Walter, Solution of the stability problem for a class of generalized Volterra prey-predator systems,, J. Differential Equations, 52 (1984), 245.  doi: 10.1016/0022-0396(84)90179-7.  Google Scholar

[19]

K. Ritzberger and J. Weibull, Evolutionary selection in normal-form games,, Econometrica, 63 (1995), 1371.  doi: 10.2307/2171774.  Google Scholar

[20]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[21]

P. Schuster , K. Sigmund, J. Hofbauer, R. Gottlieb and P. Merz, Self-regulation of behaviour in animal societies. III. Games between two populations with self-interaction,, Biol. Cybernet., 40 (1981), 17.  doi: 10.1007/BF00326677.  Google Scholar

[22]

V. Volterra, Leçons Sur La Théorie Mathématique de la Lutte Pour La Vie,, Éditions Jacques Gabay, (1990).   Google Scholar

show all references

References:
[1]

E. Akin and V. Losert, Evolutionary dynamics of zero-sum games,, J. Math. Biol., 20 (1984), 231.  doi: 10.1007/BF00275987.  Google Scholar

[2]

P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations,, J. Differential Equations, 149 (1998), 143.  doi: 10.1006/jdeq.1998.3443.  Google Scholar

[3]

J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms,, Progress in Mathematics, (2005).   Google Scholar

[4]

I. Eshel and E. Akin, Coevolutionary instability and mixed Nash solutions,, J. Math. Biol., 18 (1983), 123.  doi: 10.1007/BF00280661.  Google Scholar

[5]

R. L. Fernandes, J.-P. Oretga and T. S. Ratiu, The momentum map in Poisson geometry,, Amer. J. Math., 131 (2009), 1261.  doi: 10.1353/ajm.0.0068.  Google Scholar

[6]

J. Hofbauer, Evolutionary dynamics for bimatrix games: A Hamiltonian system?,, J. Math. Biol., 34 (1996), 675.  doi: 10.1007/BF02409754.  Google Scholar

[7]

J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation,, Nonlinear Anal., 5 (1981), 1003.  doi: 10.1016/0362-546X(81)90059-6.  Google Scholar

[8]

J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics,, Cambridge University Press, (1998).  doi: 10.1017/CBO9781139173179.  Google Scholar

[9]

J. T. Howson, Jr., Equilibria of polymatrix games,, Management Sci., 18 (): 312.   Google Scholar

[10]

J. Maynard Smith, Evolution and the Theory of Games,, Cambridge University Press, (1982).   Google Scholar

[11]

J. Nash, Non-cooperative games,, Ann. of Math. (2), 54 (1951), 286.  doi: 10.2307/1969529.  Google Scholar

[12]

G. Palm, Evolutionary stable strategies and game dynamics for $n$-person games,, J. Math. Biol., 19 (1984), 329.  doi: 10.1007/BF00277103.  Google Scholar

[13]

A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie algebras. Vol. I,, Birkhäuser Verlag, (1990).  doi: 10.1007/978-3-0348-9257-5.  Google Scholar

[14]

M. Plank, Bi-Hamiltonian systems and Lotka-Volterra equations: A three-dimensional classification,, Nonlinearity, 9 (1996), 887.  doi: 10.1088/0951-7715/9/4/004.  Google Scholar

[15]

M. Plank, Hamiltonian structures for the $n$-dimensional Lotka-Volterra equations,, J. Math. Phys., 36 (1995), 3520.  doi: 10.1063/1.530978.  Google Scholar

[16]

M. Plank, Some qualitative differences between the replicator dynamics of two player and $n$ player games,, Nonlinear Anal., 30 (1997), 1411.  doi: 10.1016/S0362-546X(97)00202-2.  Google Scholar

[17]

R. Redheffer, A new class of Volterra differential equations for which the solutions are globally asymptotically stable,, J. Differential Equations, 82 (1989), 251.  doi: 10.1016/0022-0396(89)90133-2.  Google Scholar

[18]

R. Redheffer and W. Walter, Solution of the stability problem for a class of generalized Volterra prey-predator systems,, J. Differential Equations, 52 (1984), 245.  doi: 10.1016/0022-0396(84)90179-7.  Google Scholar

[19]

K. Ritzberger and J. Weibull, Evolutionary selection in normal-form games,, Econometrica, 63 (1995), 1371.  doi: 10.2307/2171774.  Google Scholar

[20]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).   Google Scholar

[21]

P. Schuster , K. Sigmund, J. Hofbauer, R. Gottlieb and P. Merz, Self-regulation of behaviour in animal societies. III. Games between two populations with self-interaction,, Biol. Cybernet., 40 (1981), 17.  doi: 10.1007/BF00326677.  Google Scholar

[22]

V. Volterra, Leçons Sur La Théorie Mathématique de la Lutte Pour La Vie,, Éditions Jacques Gabay, (1990).   Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020032

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[4]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]