January  2015, 2(1): 51-63. doi: 10.3934/jdg.2015.2.51

On noncooperative $n$-player principal eigenvalue games

1. 

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States, United States

Received  November 2014 Revised  February 2015 Published  June 2015

We consider a noncooperative $n$-player principal eigenvalue game which is associated with an infinitesimal generator of a stochastically perturbed multi-channel dynamical system -- where, in the course of such a game, each player attempts to minimize the asymptotic rate with which the controlled state trajectory of the system exits from a given bounded open domain. In particular, we show the existence of a Nash-equilibrium point (i.e., an $n$-tuple of equilibrium linear feedback operators) in a game-theoretic setting that is connected to a maximum closed invariant set of the corresponding deterministic multi-channel dynamical system, when the latter is composed with this $n$-tuple of equilibrium linear feedback operators.
Citation: Getachew K. Befekadu, Panos J. Antsaklis. On noncooperative $n$-player principal eigenvalue games. Journal of Dynamics & Games, 2015, 2 (1) : 51-63. doi: 10.3934/jdg.2015.2.51
References:
[1]

J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984). Google Scholar

[2]

G. K. Befekadu, V. Gupta and P. J. Antsaklis, Characterization of feedback Nash equilibria for multi-channel systems via a set of non-fragile stabilizing state-feedback solutions and dissipativity inequalities,, J. Math. Contr. Sign. Syst., 25 (2013), 311. doi: 10.1007/s00498-012-0105-z. Google Scholar

[3]

M. V. Day, On the exponential exit law in the small parameter exit problem,, Stochastics, 8 (1983), 297. doi: 10.1080/17442508308833244. Google Scholar

[4]

M. V. Day, Recent progress on the small parameter exit problem,, Stochastics, 20 (1987), 121. doi: 10.1080/17442508708833440. Google Scholar

[5]

M. V. Day and T. A. Darden, Some regularity results on the Ventcel-Freidlin quasipotential function,, Appl. Math. Optim., 13 (1985), 259. doi: 10.1007/BF01442211. Google Scholar

[6]

A. Devinatz and A. Friedman, Asymptotic behavior of the principal eigenfunction for a singularly perturbed Dirichlet problem,, J. Indiana Univ. Math., 27 (1978), 143. doi: 10.1512/iumj.1978.27.27012. Google Scholar

[7]

A. Friedman, Stochastic Differential Equations and Applications,, Vol. 2, (1976). Google Scholar

[8]

I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170. Google Scholar

[9]

Y. Kifer, On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles,, J. Diff. Equ., 37 (1980), 108. doi: 10.1016/0022-0396(80)90092-3. Google Scholar

[10]

Y. Kifer, The inverse problem for small random perturbations of dynamical systems,, Israel J. Math., 40 (1981), 165. doi: 10.1007/BF02761907. Google Scholar

[11]

S. J. Sheu, Some estimates of the transition density of a non-degenerate diffusion Markov process,, Ann. Probab., 19 (1991), 538. doi: 10.1214/aop/1176990440. Google Scholar

[12]

A. D. Ventcel and M. I. Freidlin, On small random perturbations of dynamical systems,, Russian Math. Surveys, 25 (1970), 3. Google Scholar

[13]

A. D. Ventcel, On the asymptotic behavior of the largest eigenvalue of a second-order elliptic differential operator with smaller parameter in the higher derivatives,, Theo. Prob. Appl., 20 (1976), 599. doi: 10.1137/1120064. Google Scholar

[14]

A. D. Ventcel, Rough limit theorems on large deviations for Markov stochastic processes. I,, Theo. Prob. Appl., 21 (1977), 817. doi: 10.1137/1121030. Google Scholar

show all references

References:
[1]

J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984). Google Scholar

[2]

G. K. Befekadu, V. Gupta and P. J. Antsaklis, Characterization of feedback Nash equilibria for multi-channel systems via a set of non-fragile stabilizing state-feedback solutions and dissipativity inequalities,, J. Math. Contr. Sign. Syst., 25 (2013), 311. doi: 10.1007/s00498-012-0105-z. Google Scholar

[3]

M. V. Day, On the exponential exit law in the small parameter exit problem,, Stochastics, 8 (1983), 297. doi: 10.1080/17442508308833244. Google Scholar

[4]

M. V. Day, Recent progress on the small parameter exit problem,, Stochastics, 20 (1987), 121. doi: 10.1080/17442508708833440. Google Scholar

[5]

M. V. Day and T. A. Darden, Some regularity results on the Ventcel-Freidlin quasipotential function,, Appl. Math. Optim., 13 (1985), 259. doi: 10.1007/BF01442211. Google Scholar

[6]

A. Devinatz and A. Friedman, Asymptotic behavior of the principal eigenfunction for a singularly perturbed Dirichlet problem,, J. Indiana Univ. Math., 27 (1978), 143. doi: 10.1512/iumj.1978.27.27012. Google Scholar

[7]

A. Friedman, Stochastic Differential Equations and Applications,, Vol. 2, (1976). Google Scholar

[8]

I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170. Google Scholar

[9]

Y. Kifer, On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles,, J. Diff. Equ., 37 (1980), 108. doi: 10.1016/0022-0396(80)90092-3. Google Scholar

[10]

Y. Kifer, The inverse problem for small random perturbations of dynamical systems,, Israel J. Math., 40 (1981), 165. doi: 10.1007/BF02761907. Google Scholar

[11]

S. J. Sheu, Some estimates of the transition density of a non-degenerate diffusion Markov process,, Ann. Probab., 19 (1991), 538. doi: 10.1214/aop/1176990440. Google Scholar

[12]

A. D. Ventcel and M. I. Freidlin, On small random perturbations of dynamical systems,, Russian Math. Surveys, 25 (1970), 3. Google Scholar

[13]

A. D. Ventcel, On the asymptotic behavior of the largest eigenvalue of a second-order elliptic differential operator with smaller parameter in the higher derivatives,, Theo. Prob. Appl., 20 (1976), 599. doi: 10.1137/1120064. Google Scholar

[14]

A. D. Ventcel, Rough limit theorems on large deviations for Markov stochastic processes. I,, Theo. Prob. Appl., 21 (1977), 817. doi: 10.1137/1121030. Google Scholar

[1]

Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807

[2]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[3]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[4]

Aicha Balhag, Zaki Chbani, Hassan Riahi. Existence and continuous-discrete asymptotic behaviour for Tikhonov-like dynamical equilibrium systems. Evolution Equations & Control Theory, 2018, 7 (3) : 373-401. doi: 10.3934/eect.2018019

[5]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[6]

Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259

[7]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[8]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[9]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[10]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[11]

M. Motta, C. Sartori. Exit time problems for nonlinear unbounded control systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 137-156. doi: 10.3934/dcds.1999.5.137

[12]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

[13]

Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705

[14]

Arno Berger. Multi-dimensional dynamical systems and Benford's Law. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 219-237. doi: 10.3934/dcds.2005.13.219

[15]

Yuan-Ling Ye. Non-uniformly expanding dynamical systems: Multi-dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2511-2553. doi: 10.3934/dcds.2019106

[16]

Karthik Elamvazhuthi, Piyush Grover. Optimal transport over nonlinear systems via infinitesimal generators on graphs. Journal of Computational Dynamics, 2018, 5 (1&2) : 1-32. doi: 10.3934/jcd.2018001

[17]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

[18]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[19]

Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019060

[20]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]