January  2015, 2(1): 65-87. doi: 10.3934/jdg.2015.2.65

Discrete time dynamic oligopolies with adjustment constraints

1. 

Department of Economics, University of Colorado, Boulder, CO 80309-0256, United States

2. 

Department of Economics, Society, Politics, Università degli Studi di Urbino, 61029 Urbino, Italy

3. 

Department of Applied Mathematics, University of Pécs, Pécs, 7624, Hungary

Received  October 2014 Revised  March 2015 Published  June 2015

A classical $n$-firm oligopoly is considered first with linear demand and cost functions which has a unique equilibrium. We then assume that the output levels of the firms are bounded in a sense that they are unwilling to make small changes, the output levels are bounded from above, and if the optimal output level is very small then the firms quit producing, which are realistic assumptions in real economies. In the first part of the paper, the best responses of the firms are determined and the existence of infinitely many equilibria is verified. The second part of the paper examines the global dynamics of the duopoly version of the game. In particular we study the stability of the system, the bifurcations which can occur and the basins of attraction of the existing attracting sets, as a function of the speed of adjustment parameter.
Citation: Chrystie Burr, Laura Gardini, Ferenc Szidarovszky. Discrete time dynamic oligopolies with adjustment constraints. Journal of Dynamics & Games, 2015, 2 (1) : 65-87. doi: 10.3934/jdg.2015.2.65
References:
[1]

R. Amir, Cournot oligopoly and the theory of supermodular games,, Games and Economic Behavior, 15 (1996), 132.  doi: 10.1006/game.1996.0062.  Google Scholar

[2]

R. Amir and V. E. Lambson, On the effects of entry in Cournot markets,, Review of Economic Studies, 67 (2000), 235.  doi: 10.1111/1467-937X.00129.  Google Scholar

[3]

G. I. Bischi, C. Chiarella, M. Kopel and F. Szidarovszky, Nonlinear Oligopolies: Stability and Bifurcations,, Springer-Verlag, (2010).  doi: 10.1007/978-3-642-02106-0.  Google Scholar

[4]

G. I. Bischi, L. Gardini and U. Merlone, Impulsivity in binary choices and the emergence of periodicity,, Discrete Dynamics in Nature and Society, (2009).  doi: 10.1155/2009/407913.  Google Scholar

[5]

A. Dal Forno, L. Gardini and U. Merlone, Ternary choices in repeated games and border collision bifurcations,, Chaos Solitons & Fractals, 45 (2012), 294.  doi: 10.1016/j.chaos.2011.12.003.  Google Scholar

[6]

R. Day, Complex Economic Dynamics,, MIT Press, (1994).   Google Scholar

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications,, Applied Mathematical Sciences 163, (2008).   Google Scholar

[8]

T. Bresnahan and V. Ramey, Output Fluctuations at the Plant Level,, Quaterly Journal of Economics, 109 (1994), 593.  doi: 10.2307/2118415.  Google Scholar

[9]

C. Fershtman and M. Kamien, Dynamic duopolistic competition with sticky prices,, Econometrica, 55 (1987), 1151.  doi: 10.2307/1911265.  Google Scholar

[10]

L. Gardini, I. Sushko and A. Naimzada, Growing through chaotic intervals,, Journal of Economic Theory, 143 (2008), 541.  doi: 10.1016/j.jet.2008.03.005.  Google Scholar

[11]

L. Gardini, U. Merlone and F. Tramontana, Inertia in binary choices: Continuity breaking and big-bang bifurcation points,, Journal of Economic Behavior & Organization, 80 (2011), 153.  doi: 10.1016/j.jebo.2011.03.004.  Google Scholar

[12]

W. Huang and R. Day, Chaotically switching bear and bull markets: The derivation of stock price distributions from behavioral rules,, in Nonlinear Dynamics and Evolutionary Economics (eds. R. Day, (1993).   Google Scholar

[13]

W. Novshek, On the existence of Cournot equilibrium,, Review of Economic Studies, 52 (1985), 85.  doi: 10.2307/2297471.  Google Scholar

[14]

H. E. Nusse and J. A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems,, Physica D, 57 (1992), 39.  doi: 10.1016/0167-2789(92)90087-4.  Google Scholar

[15]

H. E. Nusse and J. A. Yorke, Border-collision bifurcation for piecewise smooth one-dimensional maps,, Int. J. Bifurcation Chaos, 5 (1995), 189.  doi: 10.1142/S0218127495000156.  Google Scholar

[16]

K. Okuguchi, Expectations and Stability in Oligopoly Models,, Springer-Verlag, (1976).   Google Scholar

[17]

K. Okuguchi and F. Szidarovszky, The Theory of Oligopoly with Multi-product Firms,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-662-02622-9.  Google Scholar

[18]

T. Puu and I. Sushko (eds.), Oligopoly Dynamics, Models and Tools,, Springer Verlag, (2002).   Google Scholar

[19]

T. Puu and I. Sushko (eds.), Business Cycle Dynamics, Models and Tools,, Springer Verlag, (2006).   Google Scholar

[20]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The symmetric case,, Chaos, 66 (2014), 103.  doi: 10.1016/j.chaos.2014.05.009.  Google Scholar

[21]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The asymmetric Case,, Discrete Dynamics in Nature and Society, (2014).  doi: 10.1155/2014/569296.  Google Scholar

[22]

M. Simaan and T. Takayama, Game theory applied to dynamic duopoly problems with production constraint,, Automatica, 14 (1978), 161.  doi: 10.1016/0005-1098(78)90022-5.  Google Scholar

[23]

I. Sushko and L. Gardini, Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps,, Int. J. Bif. and Chaos, 20 (2010), 2045.  doi: 10.1142/S0218127410026927.  Google Scholar

[24]

I. Sushko, L. Gardini and K. Matsuyama, Superstable credit cycles and u-sequence,, Chaos Solitons & Fractals, 59 (2014), 13.  doi: 10.1016/j.chaos.2013.11.006.  Google Scholar

[25]

F. Tramontana, F. Westerhoff and L. Gardini, On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders,, J. Econ. Behav. Organ., 74 (2010), 187.  doi: 10.1016/j.jebo.2010.02.008.  Google Scholar

[26]

F. Tramontana, L. Gardini and F. Westerhoff, Heterogeneous speculators and asset price dynamics: Further results from a one-dimensional discontinuous piecewise-linear model,, Computational Economics, 38 (2011), 329.  doi: 10.1007/s10614-011-9284-9.  Google Scholar

[27]

Z. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems,, World Scientific, (2003).   Google Scholar

show all references

References:
[1]

R. Amir, Cournot oligopoly and the theory of supermodular games,, Games and Economic Behavior, 15 (1996), 132.  doi: 10.1006/game.1996.0062.  Google Scholar

[2]

R. Amir and V. E. Lambson, On the effects of entry in Cournot markets,, Review of Economic Studies, 67 (2000), 235.  doi: 10.1111/1467-937X.00129.  Google Scholar

[3]

G. I. Bischi, C. Chiarella, M. Kopel and F. Szidarovszky, Nonlinear Oligopolies: Stability and Bifurcations,, Springer-Verlag, (2010).  doi: 10.1007/978-3-642-02106-0.  Google Scholar

[4]

G. I. Bischi, L. Gardini and U. Merlone, Impulsivity in binary choices and the emergence of periodicity,, Discrete Dynamics in Nature and Society, (2009).  doi: 10.1155/2009/407913.  Google Scholar

[5]

A. Dal Forno, L. Gardini and U. Merlone, Ternary choices in repeated games and border collision bifurcations,, Chaos Solitons & Fractals, 45 (2012), 294.  doi: 10.1016/j.chaos.2011.12.003.  Google Scholar

[6]

R. Day, Complex Economic Dynamics,, MIT Press, (1994).   Google Scholar

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications,, Applied Mathematical Sciences 163, (2008).   Google Scholar

[8]

T. Bresnahan and V. Ramey, Output Fluctuations at the Plant Level,, Quaterly Journal of Economics, 109 (1994), 593.  doi: 10.2307/2118415.  Google Scholar

[9]

C. Fershtman and M. Kamien, Dynamic duopolistic competition with sticky prices,, Econometrica, 55 (1987), 1151.  doi: 10.2307/1911265.  Google Scholar

[10]

L. Gardini, I. Sushko and A. Naimzada, Growing through chaotic intervals,, Journal of Economic Theory, 143 (2008), 541.  doi: 10.1016/j.jet.2008.03.005.  Google Scholar

[11]

L. Gardini, U. Merlone and F. Tramontana, Inertia in binary choices: Continuity breaking and big-bang bifurcation points,, Journal of Economic Behavior & Organization, 80 (2011), 153.  doi: 10.1016/j.jebo.2011.03.004.  Google Scholar

[12]

W. Huang and R. Day, Chaotically switching bear and bull markets: The derivation of stock price distributions from behavioral rules,, in Nonlinear Dynamics and Evolutionary Economics (eds. R. Day, (1993).   Google Scholar

[13]

W. Novshek, On the existence of Cournot equilibrium,, Review of Economic Studies, 52 (1985), 85.  doi: 10.2307/2297471.  Google Scholar

[14]

H. E. Nusse and J. A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems,, Physica D, 57 (1992), 39.  doi: 10.1016/0167-2789(92)90087-4.  Google Scholar

[15]

H. E. Nusse and J. A. Yorke, Border-collision bifurcation for piecewise smooth one-dimensional maps,, Int. J. Bifurcation Chaos, 5 (1995), 189.  doi: 10.1142/S0218127495000156.  Google Scholar

[16]

K. Okuguchi, Expectations and Stability in Oligopoly Models,, Springer-Verlag, (1976).   Google Scholar

[17]

K. Okuguchi and F. Szidarovszky, The Theory of Oligopoly with Multi-product Firms,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-662-02622-9.  Google Scholar

[18]

T. Puu and I. Sushko (eds.), Oligopoly Dynamics, Models and Tools,, Springer Verlag, (2002).   Google Scholar

[19]

T. Puu and I. Sushko (eds.), Business Cycle Dynamics, Models and Tools,, Springer Verlag, (2006).   Google Scholar

[20]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The symmetric case,, Chaos, 66 (2014), 103.  doi: 10.1016/j.chaos.2014.05.009.  Google Scholar

[21]

D. Radi, L. Gardini and V. Avrutin, The role of constraints in a segregation model: The asymmetric Case,, Discrete Dynamics in Nature and Society, (2014).  doi: 10.1155/2014/569296.  Google Scholar

[22]

M. Simaan and T. Takayama, Game theory applied to dynamic duopoly problems with production constraint,, Automatica, 14 (1978), 161.  doi: 10.1016/0005-1098(78)90022-5.  Google Scholar

[23]

I. Sushko and L. Gardini, Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps,, Int. J. Bif. and Chaos, 20 (2010), 2045.  doi: 10.1142/S0218127410026927.  Google Scholar

[24]

I. Sushko, L. Gardini and K. Matsuyama, Superstable credit cycles and u-sequence,, Chaos Solitons & Fractals, 59 (2014), 13.  doi: 10.1016/j.chaos.2013.11.006.  Google Scholar

[25]

F. Tramontana, F. Westerhoff and L. Gardini, On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders,, J. Econ. Behav. Organ., 74 (2010), 187.  doi: 10.1016/j.jebo.2010.02.008.  Google Scholar

[26]

F. Tramontana, L. Gardini and F. Westerhoff, Heterogeneous speculators and asset price dynamics: Further results from a one-dimensional discontinuous piecewise-linear model,, Computational Economics, 38 (2011), 329.  doi: 10.1007/s10614-011-9284-9.  Google Scholar

[27]

Z. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems,, World Scientific, (2003).   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[3]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[5]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[6]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[7]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[8]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[9]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[10]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[11]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[12]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[13]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280

[14]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[15]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[16]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[17]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[18]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[19]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[20]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

 Impact Factor: 

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (7)

[Back to Top]