Citation: |
[1] |
Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.doi: 10.1137/090758477. |
[2] |
S. Adlakha, R. Johari and G. Weintraub, Equilibria of dynamic games with many players: Existence, approximation, and market structure, J. Econom. Theory, 156 (2015), 269-316.doi: 10.1016/j.jet.2013.07.002. |
[3] |
M. Bardi, Explicit solutions of some linear-quadratic mean field games, Networks and Heterogeneous Media, 7 (2012), 243-261.doi: 10.3934/nhm.2012.7.243. |
[4] |
F. Camilli and F. Silva, A semi-discrete approximation for a first order mean field game problem, Networks and Heterogeneous Media, 7 (2012), 263-277.doi: 10.3934/nhm.2012.7.263. |
[5] |
E. Carlini and F. Silva, A fully-discrete semi-Lagrangian approximation for a first order mean field game problem, SIAM J. Numer. Anal., 52 (2014), 45-67.doi: 10.1137/120902987. |
[6] |
R. Elliot, X. Li and Y.-H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.doi: 10.1016/j.automatica.2013.08.017. |
[7] |
D. Fudenberg and J. Tirole, Learning-by-doing and market performance, The Bell J. of Economics, 14 (1983), 522-530.doi: 10.2307/3003653. |
[8] |
D. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games, J. Math. Pures et Ap., 93 (2010), 308-328.doi: 10.1016/j.matpur.2009.10.010. |
[9] |
O. Guéant, J. Lasry and P. Lions, Mean Field Games and Applications, in Paris Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, Springer-Verlag, 2011, 205-266. |
[10] |
O. Hernández-Lerma and J. Lasserre, Discrete-Time Markov Control Problems, Springer-Verlag, 1996. |
[11] |
M. Huang, P. Caines and R. Malhamé, Individual and mass behavior in large population stochastic wireless power control problems: Centralized and nash equilibrium solutions, in Proceedings of the 42nd IEEE Conference on Decision and Control, 2003. |
[12] |
M. Huang, P. Caines and R. Malhamé, Large population stochastic dynamic games: Closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle, Communications in Information and Systems, 6 (2006), 221-251.doi: 10.4310/CIS.2006.v6.n3.a5. |
[13] |
J. Lasry and P. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.doi: 10.1016/j.crma.2006.09.019. |
[14] |
J. Lasry and P. Lions, Jeux à champ moyen. II. Horizon fini et controle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.doi: 10.1016/j.crma.2006.09.018. |
[15] |
J. Lasry and P. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8. |
[16] |
A. Neyman, Stochastic games with short-stage duration, Dyn. Games Appl., 3 (2013), 236-278.doi: 10.1007/s13235-013-0083-x. |