\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Discrete time mean field games: The short-stage limit

Abstract / Introduction Related Papers Cited by
  • In this note we provide a model for discrete time mean field games. Our main contributions are an explicit approximation in the discounted case and an approximation result for a mean field game with short-stage duration.
    Mathematics Subject Classification: Primary: 91Axx; Secondary: 91A06, 91A10, 91A13, 91A25, 91A50, 91A99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.doi: 10.1137/090758477.

    [2]

    S. Adlakha, R. Johari and G. Weintraub, Equilibria of dynamic games with many players: Existence, approximation, and market structure, J. Econom. Theory, 156 (2015), 269-316.doi: 10.1016/j.jet.2013.07.002.

    [3]

    M. Bardi, Explicit solutions of some linear-quadratic mean field games, Networks and Heterogeneous Media, 7 (2012), 243-261.doi: 10.3934/nhm.2012.7.243.

    [4]

    F. Camilli and F. Silva, A semi-discrete approximation for a first order mean field game problem, Networks and Heterogeneous Media, 7 (2012), 263-277.doi: 10.3934/nhm.2012.7.263.

    [5]

    E. Carlini and F. Silva, A fully-discrete semi-Lagrangian approximation for a first order mean field game problem, SIAM J. Numer. Anal., 52 (2014), 45-67.doi: 10.1137/120902987.

    [6]

    R. Elliot, X. Li and Y.-H. Ni, Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.doi: 10.1016/j.automatica.2013.08.017.

    [7]

    D. Fudenberg and J. Tirole, Learning-by-doing and market performance, The Bell J. of Economics, 14 (1983), 522-530.doi: 10.2307/3003653.

    [8]

    D. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games, J. Math. Pures et Ap., 93 (2010), 308-328.doi: 10.1016/j.matpur.2009.10.010.

    [9]

    O. Guéant, J. Lasry and P. Lions, Mean Field Games and Applications, in Paris Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, Springer-Verlag, 2011, 205-266.

    [10]

    O. Hernández-Lerma and J. Lasserre, Discrete-Time Markov Control Problems, Springer-Verlag, 1996.

    [11]

    M. Huang, P. Caines and R. Malhamé, Individual and mass behavior in large population stochastic wireless power control problems: Centralized and nash equilibrium solutions, in Proceedings of the 42nd IEEE Conference on Decision and Control, 2003.

    [12]

    M. Huang, P. Caines and R. Malhamé, Large population stochastic dynamic games: Closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle, Communications in Information and Systems, 6 (2006), 221-251.doi: 10.4310/CIS.2006.v6.n3.a5.

    [13]

    J. Lasry and P. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.doi: 10.1016/j.crma.2006.09.019.

    [14]

    J. Lasry and P. Lions, Jeux à champ moyen. II. Horizon fini et controle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.doi: 10.1016/j.crma.2006.09.018.

    [15]

    J. Lasry and P. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8.

    [16]

    A. Neyman, Stochastic games with short-stage duration, Dyn. Games Appl., 3 (2013), 236-278.doi: 10.1007/s13235-013-0083-x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return