March & April  2015, 2(3&4): 207-225. doi: 10.3934/jdg.2015002

Endogenous budget constraints in the assignment game

1. 

Centro de Estudios Económicos, El Colegio de México, Camino al Ajusco 20, Fuentes del Pedregal, 10740 Mexico City, Mexico

2. 

ECARES - Solvay Brussels School of Economics and Management, Université libre de Bruxelles and F.R.S.-FNRS, Ave. F.D. Roosevelt 42, B1050 - Brussels, Belgium

Received  October 2014 Revised  April 2015 Published  November 2015

This paper studies economies with indivisible goods and budget-constrained agents with unit-demand who act as both sellers and buyers. In prior literature on the existence of competitive equilibrium, it is assumed the indispensability of money, which in turn implies that budgets constraints are irrelevant. We introduce a new condition, Money Scarcity (MS), that considers agents' budget constraints and ensures the existence of equilibrium. Moreover, an extended version of Gale's top trading cycles algorithm is presented, and it is shown that under MS this mechanism is strategy-proof. Finally, we prove that this mechanism is the unique mechanism that minimizes money transactions at equilibrium.
Citation: David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002
References:
[1]

Journal of Economic Theory, 88 (1999), 233-260. Google Scholar

[2]

The American Economic Review, 93 (2003), 729-747. Google Scholar

[3]

CentER Discussion Paper, 51 (2010), 1-17. Google Scholar

[4]

Mathematical Social Sciences, 37 (1999), 1-23. doi: 10.1016/S0165-4896(98)00015-8.  Google Scholar

[5]

Journal of Mathematical Economics, 52 (2014), 112-122. doi: 10.1016/j.jmateco.2014.03.011.  Google Scholar

[6]

Econometrica, 53 (1985), 873-883. doi: 10.2307/1912658.  Google Scholar

[7]

Journal of Political Economy, 94 (1986), 863-872. doi: 10.1086/261411.  Google Scholar

[8]

Annals of Economics and Finance, 3 (2002), 135-147. Google Scholar

[9]

Journal of London Mathematical Society, 10 (1935), 26-30. Google Scholar

[10]

Economic Theory, 31 (2007), 387-392. doi: 10.1007/s00199-006-0098-2.  Google Scholar

[11]

International Journal of Game Theory, 38 (2009), 17-21. doi: 10.1007/s00182-008-0136-3.  Google Scholar

[12]

American Economic Review, 99 (2009), 608-627. doi: 10.1257/aer.99.3.608.  Google Scholar

[13]

Econometrica, 59 (1991), 869-877. doi: 10.2307/2938231.  Google Scholar

[14]

Theoretical Economics, 10 (2015), 445-487. doi: 10.3982/TE1470.  Google Scholar

[15]

Journal of Economic Theory, 100 (2001), 329-355. doi: 10.1006/jeth.2000.2703.  Google Scholar

[16]

International Journal of Game Theory, 13 (1984), 41-60. doi: 10.1007/BF01769864.  Google Scholar

[17]

Mathematical Social Sciences, 48 (2004), 109-112. doi: 10.1016/j.mathsocsci.2003.12.003.  Google Scholar

[18]

Journal of Mathematical Economics, 1 (1974), 23-37. doi: 10.1016/0304-4068(74)90033-0.  Google Scholar

[19]

International Journal of Game Theory, 1 (1972), 111-130.  Google Scholar

[20]

Games and Economic Behavior, 69 (2010), 425-445. doi: 10.1016/j.geb.2009.10.010.  Google Scholar

[21]

Rev. Bras. Econ., 56 (2002), 497-510. doi: 10.1590/S0034-71402002000300006.  Google Scholar

[22]

Journal of Mathematical Economics, 28 (1997), 101-109. doi: 10.1016/S0304-4068(97)83316-2.  Google Scholar

[23]

International Economic Review, 32 (1991), 843-852. doi: 10.2307/2527037.  Google Scholar

[24]

Economics Letters, 78 (2003), 41-47. doi: 10.1016/S0165-1765(02)00206-9.  Google Scholar

show all references

References:
[1]

Journal of Economic Theory, 88 (1999), 233-260. Google Scholar

[2]

The American Economic Review, 93 (2003), 729-747. Google Scholar

[3]

CentER Discussion Paper, 51 (2010), 1-17. Google Scholar

[4]

Mathematical Social Sciences, 37 (1999), 1-23. doi: 10.1016/S0165-4896(98)00015-8.  Google Scholar

[5]

Journal of Mathematical Economics, 52 (2014), 112-122. doi: 10.1016/j.jmateco.2014.03.011.  Google Scholar

[6]

Econometrica, 53 (1985), 873-883. doi: 10.2307/1912658.  Google Scholar

[7]

Journal of Political Economy, 94 (1986), 863-872. doi: 10.1086/261411.  Google Scholar

[8]

Annals of Economics and Finance, 3 (2002), 135-147. Google Scholar

[9]

Journal of London Mathematical Society, 10 (1935), 26-30. Google Scholar

[10]

Economic Theory, 31 (2007), 387-392. doi: 10.1007/s00199-006-0098-2.  Google Scholar

[11]

International Journal of Game Theory, 38 (2009), 17-21. doi: 10.1007/s00182-008-0136-3.  Google Scholar

[12]

American Economic Review, 99 (2009), 608-627. doi: 10.1257/aer.99.3.608.  Google Scholar

[13]

Econometrica, 59 (1991), 869-877. doi: 10.2307/2938231.  Google Scholar

[14]

Theoretical Economics, 10 (2015), 445-487. doi: 10.3982/TE1470.  Google Scholar

[15]

Journal of Economic Theory, 100 (2001), 329-355. doi: 10.1006/jeth.2000.2703.  Google Scholar

[16]

International Journal of Game Theory, 13 (1984), 41-60. doi: 10.1007/BF01769864.  Google Scholar

[17]

Mathematical Social Sciences, 48 (2004), 109-112. doi: 10.1016/j.mathsocsci.2003.12.003.  Google Scholar

[18]

Journal of Mathematical Economics, 1 (1974), 23-37. doi: 10.1016/0304-4068(74)90033-0.  Google Scholar

[19]

International Journal of Game Theory, 1 (1972), 111-130.  Google Scholar

[20]

Games and Economic Behavior, 69 (2010), 425-445. doi: 10.1016/j.geb.2009.10.010.  Google Scholar

[21]

Rev. Bras. Econ., 56 (2002), 497-510. doi: 10.1590/S0034-71402002000300006.  Google Scholar

[22]

Journal of Mathematical Economics, 28 (1997), 101-109. doi: 10.1016/S0304-4068(97)83316-2.  Google Scholar

[23]

International Economic Review, 32 (1991), 843-852. doi: 10.2307/2527037.  Google Scholar

[24]

Economics Letters, 78 (2003), 41-47. doi: 10.1016/S0165-1765(02)00206-9.  Google Scholar

[1]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[2]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[3]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021012

[4]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[5]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[6]

Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021081

[7]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[9]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[10]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[11]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[12]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[13]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[14]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[15]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[16]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[17]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021045

[18]

Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021009

[19]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[20]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

 Impact Factor: 

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]