March & April  2015, 2(3&4): 207-225. doi: 10.3934/jdg.2015002

Endogenous budget constraints in the assignment game

1. 

Centro de Estudios Económicos, El Colegio de México, Camino al Ajusco 20, Fuentes del Pedregal, 10740 Mexico City, Mexico

2. 

ECARES - Solvay Brussels School of Economics and Management, Université libre de Bruxelles and F.R.S.-FNRS, Ave. F.D. Roosevelt 42, B1050 - Brussels, Belgium

Received  October 2014 Revised  April 2015 Published  November 2015

This paper studies economies with indivisible goods and budget-constrained agents with unit-demand who act as both sellers and buyers. In prior literature on the existence of competitive equilibrium, it is assumed the indispensability of money, which in turn implies that budgets constraints are irrelevant. We introduce a new condition, Money Scarcity (MS), that considers agents' budget constraints and ensures the existence of equilibrium. Moreover, an extended version of Gale's top trading cycles algorithm is presented, and it is shown that under MS this mechanism is strategy-proof. Finally, we prove that this mechanism is the unique mechanism that minimizes money transactions at equilibrium.
Citation: David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002
References:
[1]

A. Abdulkadiroǧlu and T. Sönmez, House allocation with existing tenants,, Journal of Economic Theory, 88 (1999), 233.   Google Scholar

[2]

A. Abdulkadiroǧlu and T. Sönmez, School choice: A mechanism design approach,, The American Economic Review, 93 (2003), 729.   Google Scholar

[3]

T. Andersson, C. Andersson and A. J. J. Talman, Sets in excess demand in ascending auctions with unit-demand bidders,, CentER Discussion Paper, 51 (2010), 1.   Google Scholar

[4]

C. Beviá, M. Quinzii and J. A. Silva, Buying several indivisible goods,, Mathematical Social Sciences, 37 (1999), 1.  doi: 10.1016/S0165-4896(98)00015-8.  Google Scholar

[5]

A. Caplin and J. Leahy, A graph theoretic approach to markets for indivisible goods,, Journal of Mathematical Economics, 52 (2014), 112.  doi: 10.1016/j.jmateco.2014.03.011.  Google Scholar

[6]

G. Demange and D. Gale, The strategy structure of two-sided matching markets,, Econometrica, 53 (1985), 873.  doi: 10.2307/1912658.  Google Scholar

[7]

G. Demange, D. Gale and M. Sotomayor, Multi-item auctions,, Journal of Political Economy, 94 (1986), 863.  doi: 10.1086/261411.  Google Scholar

[8]

S. Fujishige and Z. Yang, Existence of an equilibrium in a general competitive exchange economy with indivisible goods and money,, Annals of Economics and Finance, 3 (2002), 135.   Google Scholar

[9]

P. Hall, On representatives of subsets,, Journal of London Mathematical Society, 10 (1935), 26.   Google Scholar

[10]

Y. Hwang and M. Shih, Equilibrium in a market game,, Economic Theory, 31 (2007), 387.  doi: 10.1007/s00199-006-0098-2.  Google Scholar

[11]

O. Kesten, Coalitional strategy-proofness and resource monotonicity for house allocation problems,, International Journal of Game Theory, 38 (2009), 17.  doi: 10.1007/s00182-008-0136-3.  Google Scholar

[12]

F. Kojima and P. Pathak, Incentives and stability in large two-sided matching markets,, American Economic Review, 99 (2009), 608.  doi: 10.1257/aer.99.3.608.  Google Scholar

[13]

S. Lars-Gunnar, Nash implementation of competitive equilibria in a model with indivisible goods,, Econometrica, 59 (1991), 869.  doi: 10.2307/2938231.  Google Scholar

[14]

S. Morimoto and S. Serizawa, Strategy-proofness and efficiency with nonquasi-linear preferences: A characterization of minimum price walrasian rule,, Theoretical Economics, 10 (2015), 445.  doi: 10.3982/TE1470.  Google Scholar

[15]

E. Miyagawa, House allocation with transfers,, Journal of Economic Theory, 100 (2001), 329.  doi: 10.1006/jeth.2000.2703.  Google Scholar

[16]

M. Quinzii, Core and competitive equilibria with indivisibilities,, International Journal of Game Theory, 13 (1984), 41.  doi: 10.1007/BF01769864.  Google Scholar

[17]

H. Saitoh, Existence of positive equilibrium price vectors in indivisible goods markets: A note,, Mathematical Social Sciences, 48 (2004), 109.  doi: 10.1016/j.mathsocsci.2003.12.003.  Google Scholar

[18]

L. S. Shapley and H. E. Scarf, On cores and indivisibility,, Journal of Mathematical Economics, 1 (1974), 23.  doi: 10.1016/0304-4068(74)90033-0.  Google Scholar

[19]

L. S. Shapley and M. Shubik, The assignment game I: The core,, International Journal of Game Theory, 1 (1972), 111.   Google Scholar

[20]

T. Sönmez and U. Ünver, House allocation with existing tenants: A characterization,, Games and Economic Behavior, 69 (2010), 425.  doi: 10.1016/j.geb.2009.10.010.  Google Scholar

[21]

M. Sotomayor, A simultaneous descending bid auction for multiple items and unitary demand,, Rev. Bras. Econ., 56 (2002), 497.  doi: 10.1590/S0034-71402002000300006.  Google Scholar

[22]

G. van der Laan, D. Talman and Z. Yang, Existence of an equilibrium in a competitive economy with indivisibilities and money,, Journal of Mathematical Economics, 28 (1997), 101.  doi: 10.1016/S0304-4068(97)83316-2.  Google Scholar

[23]

J. Wako, Strong core and competitive equilibria of an exchange market with indivisible goods,, International Economic Review, 32 (1991), 843.  doi: 10.2307/2527037.  Google Scholar

[24]

Z. Yang, A competitive market model for indivisible commodities,, Economics Letters, 78 (2003), 41.  doi: 10.1016/S0165-1765(02)00206-9.  Google Scholar

show all references

References:
[1]

A. Abdulkadiroǧlu and T. Sönmez, House allocation with existing tenants,, Journal of Economic Theory, 88 (1999), 233.   Google Scholar

[2]

A. Abdulkadiroǧlu and T. Sönmez, School choice: A mechanism design approach,, The American Economic Review, 93 (2003), 729.   Google Scholar

[3]

T. Andersson, C. Andersson and A. J. J. Talman, Sets in excess demand in ascending auctions with unit-demand bidders,, CentER Discussion Paper, 51 (2010), 1.   Google Scholar

[4]

C. Beviá, M. Quinzii and J. A. Silva, Buying several indivisible goods,, Mathematical Social Sciences, 37 (1999), 1.  doi: 10.1016/S0165-4896(98)00015-8.  Google Scholar

[5]

A. Caplin and J. Leahy, A graph theoretic approach to markets for indivisible goods,, Journal of Mathematical Economics, 52 (2014), 112.  doi: 10.1016/j.jmateco.2014.03.011.  Google Scholar

[6]

G. Demange and D. Gale, The strategy structure of two-sided matching markets,, Econometrica, 53 (1985), 873.  doi: 10.2307/1912658.  Google Scholar

[7]

G. Demange, D. Gale and M. Sotomayor, Multi-item auctions,, Journal of Political Economy, 94 (1986), 863.  doi: 10.1086/261411.  Google Scholar

[8]

S. Fujishige and Z. Yang, Existence of an equilibrium in a general competitive exchange economy with indivisible goods and money,, Annals of Economics and Finance, 3 (2002), 135.   Google Scholar

[9]

P. Hall, On representatives of subsets,, Journal of London Mathematical Society, 10 (1935), 26.   Google Scholar

[10]

Y. Hwang and M. Shih, Equilibrium in a market game,, Economic Theory, 31 (2007), 387.  doi: 10.1007/s00199-006-0098-2.  Google Scholar

[11]

O. Kesten, Coalitional strategy-proofness and resource monotonicity for house allocation problems,, International Journal of Game Theory, 38 (2009), 17.  doi: 10.1007/s00182-008-0136-3.  Google Scholar

[12]

F. Kojima and P. Pathak, Incentives and stability in large two-sided matching markets,, American Economic Review, 99 (2009), 608.  doi: 10.1257/aer.99.3.608.  Google Scholar

[13]

S. Lars-Gunnar, Nash implementation of competitive equilibria in a model with indivisible goods,, Econometrica, 59 (1991), 869.  doi: 10.2307/2938231.  Google Scholar

[14]

S. Morimoto and S. Serizawa, Strategy-proofness and efficiency with nonquasi-linear preferences: A characterization of minimum price walrasian rule,, Theoretical Economics, 10 (2015), 445.  doi: 10.3982/TE1470.  Google Scholar

[15]

E. Miyagawa, House allocation with transfers,, Journal of Economic Theory, 100 (2001), 329.  doi: 10.1006/jeth.2000.2703.  Google Scholar

[16]

M. Quinzii, Core and competitive equilibria with indivisibilities,, International Journal of Game Theory, 13 (1984), 41.  doi: 10.1007/BF01769864.  Google Scholar

[17]

H. Saitoh, Existence of positive equilibrium price vectors in indivisible goods markets: A note,, Mathematical Social Sciences, 48 (2004), 109.  doi: 10.1016/j.mathsocsci.2003.12.003.  Google Scholar

[18]

L. S. Shapley and H. E. Scarf, On cores and indivisibility,, Journal of Mathematical Economics, 1 (1974), 23.  doi: 10.1016/0304-4068(74)90033-0.  Google Scholar

[19]

L. S. Shapley and M. Shubik, The assignment game I: The core,, International Journal of Game Theory, 1 (1972), 111.   Google Scholar

[20]

T. Sönmez and U. Ünver, House allocation with existing tenants: A characterization,, Games and Economic Behavior, 69 (2010), 425.  doi: 10.1016/j.geb.2009.10.010.  Google Scholar

[21]

M. Sotomayor, A simultaneous descending bid auction for multiple items and unitary demand,, Rev. Bras. Econ., 56 (2002), 497.  doi: 10.1590/S0034-71402002000300006.  Google Scholar

[22]

G. van der Laan, D. Talman and Z. Yang, Existence of an equilibrium in a competitive economy with indivisibilities and money,, Journal of Mathematical Economics, 28 (1997), 101.  doi: 10.1016/S0304-4068(97)83316-2.  Google Scholar

[23]

J. Wako, Strong core and competitive equilibria of an exchange market with indivisible goods,, International Economic Review, 32 (1991), 843.  doi: 10.2307/2527037.  Google Scholar

[24]

Z. Yang, A competitive market model for indivisible commodities,, Economics Letters, 78 (2003), 41.  doi: 10.1016/S0165-1765(02)00206-9.  Google Scholar

[1]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[2]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[3]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[4]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[5]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[6]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[7]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[8]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[9]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[10]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[13]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[16]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[17]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[18]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[19]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[20]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

 Impact Factor: 

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]