January  2016, 3(1): 75-100. doi: 10.3934/jdg.2016004

Local market structure in a Hotelling town

1. 

LIAAD INESC TEC and Department of Mathematics, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

2. 

LIAAD-INESC TEC and Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

3. 

Department of Mathematics, University of Minho, Campus de Gualtar Braga, Portugal

Received  October 2015 Revised  January 2016 Published  March 2016

We develop a theoretical framework to study the location-price competition in a Hotelling-type network game, extending the Hotelling model, with linear transportation costs, from a line (city) to a network (town). We show the existence of a pure Nash equilibrium price if, and only if, some explicit conditions on the production costs and on the network structure hold. Furthermore, we prove that the local optimal localization of the firms are at the cross-roads of the town.
Citation: Alberto A. Pinto, João P. Almeida, Telmo Parreira. Local market structure in a Hotelling town. Journal of Dynamics & Games, 2016, 3 (1) : 75-100. doi: 10.3934/jdg.2016004
References:
[1]

V. Aguirregabiria and G. Vicentini, Dynamic spatial competition between multi-store firms,, mimeo., (2015).   Google Scholar

[2]

C. D'Aspermont, J. Gabszewicz and J. F. Thisse, On Hotelling's "Stability in competition'',, Econometrica, 47 (1979), 1145.  doi: 10.2307/1911955.  Google Scholar

[3]

F. Bloch and N. Quérou, Pricing in social networks,, Games Econom. Behav., 80 (2013), 243.  doi: 10.1016/j.geb.2013.03.006.  Google Scholar

[4]

Y. Bramoullé, R. Kranton and M. D'Amours, Strategic interaction and networks,, American Economic Review, 104 (2012), 898.   Google Scholar

[5]

T. H. Colding and W. P. Minicozzi, Minimal Surfaces,, Courant Lecture Notes in Math, (1999).   Google Scholar

[6]

Y. Chen and M. H. Riordan, Price and variety in the spokes model,, Economic Journal, 117 (2007), 897.  doi: 10.1111/j.1468-0297.2007.02063.x.  Google Scholar

[7]

G. Fournier and M. Scarsini, Hotelling's Games on Networks: Efficiency of Equilibria,, Centre d'Economie de la Sorbone, (2014).   Google Scholar

[8]

A. Galeotti, S. Goyal and M. Jackson and F. Vega-Redondo and L. Yariv, Network games,, The Review of Economic Studies, 77 (2010), 218.  doi: 10.1111/j.1467-937X.2009.00570.x.  Google Scholar

[9]

A. Galeotti and F. Vega-Redondo, Complex networks and local externalities: A strategic approach,, International Journal of Economic Theory, 7 (2011), 77.  doi: 10.1111/j.1742-7363.2010.00149.x.  Google Scholar

[10]

S. Goyal, Connections: An introduction to the Economics of Networks,, Princeton University Press, (2007).   Google Scholar

[11]

R. Gulliver, Removability of singular points on surfaces of bounded mean curvature,, The Journal of Differential Geometry, 11 (1976), 345.   Google Scholar

[12]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11.  doi: 10.2307/2098001.  Google Scholar

[13]

H. Hotelling, Stability in competition,, The Economic Journal, 39 (1929), 41.   Google Scholar

[14]

M. Jorge and W. Maldonado, Price Differentiation and Menu Costs in Credit Card Payments,, ANU Working Papers in Economics and Econometrics 2012-592, (2012), 2012.   Google Scholar

[15]

V. Mazalov and M. Sakaguchi, Location game on the plane,, International Game Theory Review, 5 (2003), 13.  doi: 10.1142/S0219198903000854.  Google Scholar

[16]

T. Miller, R. L. Tobin and T. L. Friesz, Network facility-location models in stackelberg-nash-cournot spatial competition,, Papers in Regional Science, 71 (1992), 277.   Google Scholar

[17]

M. J. Osborne and C. Pitchick, Equilibrium in hotelling's model of spatial competition,, Econometrica, 55 (1987), 911.  doi: 10.2307/1911035.  Google Scholar

[18]

D. Palvogyi, Hotelling on graphs,, mimeo, (2011).   Google Scholar

[19]

A. A. Pinto and T. Parreira, A hotelling-type network,, in Dynamics, 1 (2011), 709.  doi: 10.1007/978-3-642-11456-4_45.  Google Scholar

[20]

A. A. Pinto and T. Parreira, Optimal localization of firms in Hotelling networks,, in Modeling, 73 (2014), 567.  doi: 10.1007/978-3-319-04849-9_2.  Google Scholar

[21]

A. A. Pinto and T. Parreira, Complete versus incomplete information in the Hotelling model,, in Modeling, 73 (2014), 17.  doi: 10.1007/978-3-319-04849-9_33.  Google Scholar

[22]

A. A. Pinto and T. Parreira, Maximal differentiation in the Hotelling model with uncertainty,, in Modeling, 73 (2014), 585.  doi: 10.1007/978-3-319-04849-9_34.  Google Scholar

[23]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477.  doi: 10.1080/02331934.2014.917304.  Google Scholar

[24]

A. A. Pinto, Game theory and duopoly models,, in preparation., ().   Google Scholar

[25]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141.  doi: 10.2307/3003323.  Google Scholar

[26]

A. Soetevent, Price Competition on Graphs,, Tinbergen Institute Discussion Papers 10-126/1, (2010), 10.   Google Scholar

[27]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213.  doi: 10.1016/0167-7187(94)00449-C.  Google Scholar

show all references

References:
[1]

V. Aguirregabiria and G. Vicentini, Dynamic spatial competition between multi-store firms,, mimeo., (2015).   Google Scholar

[2]

C. D'Aspermont, J. Gabszewicz and J. F. Thisse, On Hotelling's "Stability in competition'',, Econometrica, 47 (1979), 1145.  doi: 10.2307/1911955.  Google Scholar

[3]

F. Bloch and N. Quérou, Pricing in social networks,, Games Econom. Behav., 80 (2013), 243.  doi: 10.1016/j.geb.2013.03.006.  Google Scholar

[4]

Y. Bramoullé, R. Kranton and M. D'Amours, Strategic interaction and networks,, American Economic Review, 104 (2012), 898.   Google Scholar

[5]

T. H. Colding and W. P. Minicozzi, Minimal Surfaces,, Courant Lecture Notes in Math, (1999).   Google Scholar

[6]

Y. Chen and M. H. Riordan, Price and variety in the spokes model,, Economic Journal, 117 (2007), 897.  doi: 10.1111/j.1468-0297.2007.02063.x.  Google Scholar

[7]

G. Fournier and M. Scarsini, Hotelling's Games on Networks: Efficiency of Equilibria,, Centre d'Economie de la Sorbone, (2014).   Google Scholar

[8]

A. Galeotti, S. Goyal and M. Jackson and F. Vega-Redondo and L. Yariv, Network games,, The Review of Economic Studies, 77 (2010), 218.  doi: 10.1111/j.1467-937X.2009.00570.x.  Google Scholar

[9]

A. Galeotti and F. Vega-Redondo, Complex networks and local externalities: A strategic approach,, International Journal of Economic Theory, 7 (2011), 77.  doi: 10.1111/j.1742-7363.2010.00149.x.  Google Scholar

[10]

S. Goyal, Connections: An introduction to the Economics of Networks,, Princeton University Press, (2007).   Google Scholar

[11]

R. Gulliver, Removability of singular points on surfaces of bounded mean curvature,, The Journal of Differential Geometry, 11 (1976), 345.   Google Scholar

[12]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11.  doi: 10.2307/2098001.  Google Scholar

[13]

H. Hotelling, Stability in competition,, The Economic Journal, 39 (1929), 41.   Google Scholar

[14]

M. Jorge and W. Maldonado, Price Differentiation and Menu Costs in Credit Card Payments,, ANU Working Papers in Economics and Econometrics 2012-592, (2012), 2012.   Google Scholar

[15]

V. Mazalov and M. Sakaguchi, Location game on the plane,, International Game Theory Review, 5 (2003), 13.  doi: 10.1142/S0219198903000854.  Google Scholar

[16]

T. Miller, R. L. Tobin and T. L. Friesz, Network facility-location models in stackelberg-nash-cournot spatial competition,, Papers in Regional Science, 71 (1992), 277.   Google Scholar

[17]

M. J. Osborne and C. Pitchick, Equilibrium in hotelling's model of spatial competition,, Econometrica, 55 (1987), 911.  doi: 10.2307/1911035.  Google Scholar

[18]

D. Palvogyi, Hotelling on graphs,, mimeo, (2011).   Google Scholar

[19]

A. A. Pinto and T. Parreira, A hotelling-type network,, in Dynamics, 1 (2011), 709.  doi: 10.1007/978-3-642-11456-4_45.  Google Scholar

[20]

A. A. Pinto and T. Parreira, Optimal localization of firms in Hotelling networks,, in Modeling, 73 (2014), 567.  doi: 10.1007/978-3-319-04849-9_2.  Google Scholar

[21]

A. A. Pinto and T. Parreira, Complete versus incomplete information in the Hotelling model,, in Modeling, 73 (2014), 17.  doi: 10.1007/978-3-319-04849-9_33.  Google Scholar

[22]

A. A. Pinto and T. Parreira, Maximal differentiation in the Hotelling model with uncertainty,, in Modeling, 73 (2014), 585.  doi: 10.1007/978-3-319-04849-9_34.  Google Scholar

[23]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477.  doi: 10.1080/02331934.2014.917304.  Google Scholar

[24]

A. A. Pinto, Game theory and duopoly models,, in preparation., ().   Google Scholar

[25]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141.  doi: 10.2307/3003323.  Google Scholar

[26]

A. Soetevent, Price Competition on Graphs,, Tinbergen Institute Discussion Papers 10-126/1, (2010), 10.   Google Scholar

[27]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213.  doi: 10.1016/0167-7187(94)00449-C.  Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[4]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[5]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[6]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[7]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[8]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[9]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[10]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[11]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[12]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[13]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[14]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[17]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (4)

[Back to Top]