April  2016, 3(2): 121-142. doi: 10.3934/jdg.2016006

Localization and prices in the quadratic Hotelling model with uncertainty

1. 

LIAAD - INESC TEC and Department of Mathematics, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, 4169-007

2. 

Department of Mathematics and Applications, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Received  October 2015 Revised  February 2016 Published  April 2016

For the quadratic Hotelling model, we study the optimal localization and price strategies under incomplete information on the production costs of the firms. We compute explicitly the pure Bayesian-Nash price duopoly equilibrium and we prove that it does not depend upon the distributions of the production costs of the firms, except on their first moments. We find when the maximal differentiation is a local optimum for the localization strategy of both firms.
Citation: Alberto A. Pinto, Telmo Parreira. Localization and prices in the quadratic Hotelling model with uncertainty. Journal of Dynamics & Games, 2016, 3 (2) : 121-142. doi: 10.3934/jdg.2016006
References:
[1]

C. D'Aspremont, J. Gabszewicz and J.-F. Thisse, On Hotelling's "Stability in Competition'',, Econometrica, 47 (1979), 1145. doi: 10.2307/1911955. Google Scholar

[2]

R. Biscaia and P. Sarmento, Spatial Competition and Firms' Location Decisions under Cost Uncertainty, in, FEP Working Papers no. 445, (2012). Google Scholar

[3]

M. Boyer, J. Laffont, P. Mahenc and M. Moreaux, Location distortions under incomplete information,, Regional Science and Urban Economics, 24 (1994), 409. doi: 10.1016/0166-0462(93)02048-8. Google Scholar

[4]

M. Boyer, P. Mahenc and M. Moreaux, Asymmetric information and product differentiation,, Regional Science and Urban Economics, 33 (2003), 93. doi: 10.1016/S0166-0462(01)00108-9. Google Scholar

[5]

F. Ferreira, F. A. Ferreira, M. Ferreira and A. A. Pinto, Flexibility in a Stackelberg leadership with differentiated goods,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 877. doi: 10.1080/02331934.2013.836649. Google Scholar

[6]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Price-setting dynamical duopoly with incomplete information, in, Nonlinear Science and Complexity, (2011), 397. doi: 10.1007/978-90-481-9884-9_46. Google Scholar

[7]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Flexibility in stackelberg leadership, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 399. doi: 10.1007/978-1-4020-8678-6_34. Google Scholar

[8]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Bayesian price leadership, in, Mathematical Methods in Engineering, (2007), 371. doi: 10.1007/978-1-4020-5678-9_32. Google Scholar

[9]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, in, Mathematical Methods in Engineering, (2007), 359. doi: 10.1007/978-1-4020-5678-9_31. Google Scholar

[10]

M. Ferreira, I. P. Figueiredo, B. M. P. M. Oliveira and A. A. Pinto, Strategic optimization in R&D Investment,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 1013. doi: 10.1080/02331934.2011.653357. Google Scholar

[11]

F. A. Ferreira and A. A. Pinto, Uncertainty on a Bertrand duopoly with product differentiation, in, Nonlinear Science and Complexity, (2011), 389. doi: 10.1007/978-90-481-9884-9_45. Google Scholar

[12]

R. Gibbons, A Primer in Game Theory,, Prentice Hall, (1992). Google Scholar

[13]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11. doi: 10.2307/2098001. Google Scholar

[14]

H. Hotelling, Stability in competition,, The Collected Economics Articles of Harold Hotelling, (1990), 50. doi: 10.1007/978-1-4613-8905-7_4. Google Scholar

[15]

P. Lederer and A. Hurter, Competition of Firms: Discriminatory pricing and location,, Econometrica, 54 (1986), 623. doi: 10.2307/1911311. Google Scholar

[16]

M. J. Osborne and C. Pitchick, Equilibrium in Hotelling's model of spatial competition,, Econometrica, 55 (1987), 911. doi: 10.2307/1911035. Google Scholar

[17]

A. A. Pinto, F. A. Ferreira, M. Ferreira and B. M. P. M. Oliveira, Cournot Duopoly with Competition in the R&D Expenditures, in, Proceedings of Symposia in Pure Mathematics, 7 (2007), 1060311. doi: 10.1002/pamm.200701031. Google Scholar

[18]

A. A. Pinto, B. M. P. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R&D strategies of the firms, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 415. doi: 10.1007/978-1-4020-8678-6_36. Google Scholar

[19]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477. doi: 10.1080/02331934.2014.917304. Google Scholar

[20]

A. A. Pinto and T. Parreira, A Hotelling-type Network, in, Dynamics, 1 (2011), 709. doi: 10.1007/978-3-642-11456-4_45. Google Scholar

[21]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141. doi: 10.2307/3003323. Google Scholar

[22]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213. doi: 10.1016/0167-7187(94)00449-C. Google Scholar

[23]

S. Ziss, Entry deterrence, cost advantage and horizontal product differentiation,, Regional Science and Urban Economics, 23 (1993), 523. doi: 10.1016/0166-0462(93)90045-G. Google Scholar

show all references

References:
[1]

C. D'Aspremont, J. Gabszewicz and J.-F. Thisse, On Hotelling's "Stability in Competition'',, Econometrica, 47 (1979), 1145. doi: 10.2307/1911955. Google Scholar

[2]

R. Biscaia and P. Sarmento, Spatial Competition and Firms' Location Decisions under Cost Uncertainty, in, FEP Working Papers no. 445, (2012). Google Scholar

[3]

M. Boyer, J. Laffont, P. Mahenc and M. Moreaux, Location distortions under incomplete information,, Regional Science and Urban Economics, 24 (1994), 409. doi: 10.1016/0166-0462(93)02048-8. Google Scholar

[4]

M. Boyer, P. Mahenc and M. Moreaux, Asymmetric information and product differentiation,, Regional Science and Urban Economics, 33 (2003), 93. doi: 10.1016/S0166-0462(01)00108-9. Google Scholar

[5]

F. Ferreira, F. A. Ferreira, M. Ferreira and A. A. Pinto, Flexibility in a Stackelberg leadership with differentiated goods,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 877. doi: 10.1080/02331934.2013.836649. Google Scholar

[6]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Price-setting dynamical duopoly with incomplete information, in, Nonlinear Science and Complexity, (2011), 397. doi: 10.1007/978-90-481-9884-9_46. Google Scholar

[7]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Flexibility in stackelberg leadership, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 399. doi: 10.1007/978-1-4020-8678-6_34. Google Scholar

[8]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Bayesian price leadership, in, Mathematical Methods in Engineering, (2007), 371. doi: 10.1007/978-1-4020-5678-9_32. Google Scholar

[9]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, in, Mathematical Methods in Engineering, (2007), 359. doi: 10.1007/978-1-4020-5678-9_31. Google Scholar

[10]

M. Ferreira, I. P. Figueiredo, B. M. P. M. Oliveira and A. A. Pinto, Strategic optimization in R&D Investment,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 1013. doi: 10.1080/02331934.2011.653357. Google Scholar

[11]

F. A. Ferreira and A. A. Pinto, Uncertainty on a Bertrand duopoly with product differentiation, in, Nonlinear Science and Complexity, (2011), 389. doi: 10.1007/978-90-481-9884-9_45. Google Scholar

[12]

R. Gibbons, A Primer in Game Theory,, Prentice Hall, (1992). Google Scholar

[13]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11. doi: 10.2307/2098001. Google Scholar

[14]

H. Hotelling, Stability in competition,, The Collected Economics Articles of Harold Hotelling, (1990), 50. doi: 10.1007/978-1-4613-8905-7_4. Google Scholar

[15]

P. Lederer and A. Hurter, Competition of Firms: Discriminatory pricing and location,, Econometrica, 54 (1986), 623. doi: 10.2307/1911311. Google Scholar

[16]

M. J. Osborne and C. Pitchick, Equilibrium in Hotelling's model of spatial competition,, Econometrica, 55 (1987), 911. doi: 10.2307/1911035. Google Scholar

[17]

A. A. Pinto, F. A. Ferreira, M. Ferreira and B. M. P. M. Oliveira, Cournot Duopoly with Competition in the R&D Expenditures, in, Proceedings of Symposia in Pure Mathematics, 7 (2007), 1060311. doi: 10.1002/pamm.200701031. Google Scholar

[18]

A. A. Pinto, B. M. P. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R&D strategies of the firms, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 415. doi: 10.1007/978-1-4020-8678-6_36. Google Scholar

[19]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477. doi: 10.1080/02331934.2014.917304. Google Scholar

[20]

A. A. Pinto and T. Parreira, A Hotelling-type Network, in, Dynamics, 1 (2011), 709. doi: 10.1007/978-3-642-11456-4_45. Google Scholar

[21]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141. doi: 10.2307/3003323. Google Scholar

[22]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213. doi: 10.1016/0167-7187(94)00449-C. Google Scholar

[23]

S. Ziss, Entry deterrence, cost advantage and horizontal product differentiation,, Regional Science and Urban Economics, 23 (1993), 523. doi: 10.1016/0166-0462(93)90045-G. Google Scholar

[1]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[2]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

[3]

Alberto A. Pinto, João P. Almeida, Telmo Parreira. Local market structure in a Hotelling town. Journal of Dynamics & Games, 2016, 3 (1) : 75-100. doi: 10.3934/jdg.2016004

[4]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

[5]

Martin Strugarek, Nicolas Vauchelet, Jorge P. Zubelli. Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 961-991. doi: 10.3934/mbe.2018043

[6]

Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790

[7]

Qing-you Yan, Juan-bo Li, Ju-liang Zhang. Licensing schemes in Stackelberg model under asymmetric information of product costs. Journal of Industrial & Management Optimization, 2007, 3 (4) : 763-774. doi: 10.3934/jimo.2007.3.763

[8]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[9]

Rabah Amir, Igor V. Evstigneev. A new perspective on the classical Cournot duopoly. Journal of Dynamics & Games, 2017, 4 (4) : 361-367. doi: 10.3934/jdg.2017019

[10]

Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903

[11]

Tom Maertens, Joris Walraevens, Herwig Bruneel. Controlling delay differentiation with priority jumps: Analytical study. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 657-673. doi: 10.3934/naco.2011.1.657

[12]

Jianzhong Wang. Wavelet approach to numerical differentiation of noisy functions. Communications on Pure & Applied Analysis, 2007, 6 (3) : 873-897. doi: 10.3934/cpaa.2007.6.873

[13]

Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1317-1344. doi: 10.3934/jimo.2018097

[14]

P. C. Jha, Sugandha Aggarwal, Anshu Gupta, Ruhul Sarker. Multi-criteria media mix decision model for advertising a single product with segment specific and mass media. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1367-1389. doi: 10.3934/jimo.2016.12.1367

[15]

Yanju Zhou, Zhen Shen, Renren Ying, Xuanhua Xu. A loss-averse two-product ordering model with information updating in two-echelon inventory system. Journal of Industrial & Management Optimization, 2018, 14 (2) : 687-705. doi: 10.3934/jimo.2017069

[16]

Songhai Deng, Zhong Wan, Yanjiu Zhou. Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020096

[17]

Nikolaos Kazantzis, Vasiliki Kazantzi. Characterization of the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using singular invariance PDEs: Application to immobilized enzyme and cell bioreactors. Mathematical Biosciences & Engineering, 2010, 7 (2) : 401-419. doi: 10.3934/mbe.2010.7.401

[18]

Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089

[19]

Iraklis Kollias, Elias Camouzis, John Leventides. Global analysis of solutions on the Cournot-Theocharis duopoly with variable marginal costs. Journal of Dynamics & Games, 2017, 4 (1) : 25-39. doi: 10.3934/jdg.2017002

[20]

Z. B. Ibrahim, N. A. A. Mohd Nasir, K. I. Othman, N. Zainuddin. Adaptive order of block backward differentiation formulas for stiff ODEs. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 95-106. doi: 10.3934/naco.2017006

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]