April  2016, 3(2): 121-142. doi: 10.3934/jdg.2016006

Localization and prices in the quadratic Hotelling model with uncertainty

1. 

LIAAD - INESC TEC and Department of Mathematics, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, 4169-007

2. 

Department of Mathematics and Applications, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Received  October 2015 Revised  February 2016 Published  April 2016

For the quadratic Hotelling model, we study the optimal localization and price strategies under incomplete information on the production costs of the firms. We compute explicitly the pure Bayesian-Nash price duopoly equilibrium and we prove that it does not depend upon the distributions of the production costs of the firms, except on their first moments. We find when the maximal differentiation is a local optimum for the localization strategy of both firms.
Citation: Alberto A. Pinto, Telmo Parreira. Localization and prices in the quadratic Hotelling model with uncertainty. Journal of Dynamics & Games, 2016, 3 (2) : 121-142. doi: 10.3934/jdg.2016006
References:
[1]

C. D'Aspremont, J. Gabszewicz and J.-F. Thisse, On Hotelling's "Stability in Competition'',, Econometrica, 47 (1979), 1145.  doi: 10.2307/1911955.  Google Scholar

[2]

R. Biscaia and P. Sarmento, Spatial Competition and Firms' Location Decisions under Cost Uncertainty, in, FEP Working Papers no. 445, (2012).   Google Scholar

[3]

M. Boyer, J. Laffont, P. Mahenc and M. Moreaux, Location distortions under incomplete information,, Regional Science and Urban Economics, 24 (1994), 409.  doi: 10.1016/0166-0462(93)02048-8.  Google Scholar

[4]

M. Boyer, P. Mahenc and M. Moreaux, Asymmetric information and product differentiation,, Regional Science and Urban Economics, 33 (2003), 93.  doi: 10.1016/S0166-0462(01)00108-9.  Google Scholar

[5]

F. Ferreira, F. A. Ferreira, M. Ferreira and A. A. Pinto, Flexibility in a Stackelberg leadership with differentiated goods,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 877.  doi: 10.1080/02331934.2013.836649.  Google Scholar

[6]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Price-setting dynamical duopoly with incomplete information, in, Nonlinear Science and Complexity, (2011), 397.  doi: 10.1007/978-90-481-9884-9_46.  Google Scholar

[7]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Flexibility in stackelberg leadership, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 399.  doi: 10.1007/978-1-4020-8678-6_34.  Google Scholar

[8]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Bayesian price leadership, in, Mathematical Methods in Engineering, (2007), 371.  doi: 10.1007/978-1-4020-5678-9_32.  Google Scholar

[9]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, in, Mathematical Methods in Engineering, (2007), 359.  doi: 10.1007/978-1-4020-5678-9_31.  Google Scholar

[10]

M. Ferreira, I. P. Figueiredo, B. M. P. M. Oliveira and A. A. Pinto, Strategic optimization in R&D Investment,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 1013.  doi: 10.1080/02331934.2011.653357.  Google Scholar

[11]

F. A. Ferreira and A. A. Pinto, Uncertainty on a Bertrand duopoly with product differentiation, in, Nonlinear Science and Complexity, (2011), 389.  doi: 10.1007/978-90-481-9884-9_45.  Google Scholar

[12]

R. Gibbons, A Primer in Game Theory,, Prentice Hall, (1992).   Google Scholar

[13]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11.  doi: 10.2307/2098001.  Google Scholar

[14]

H. Hotelling, Stability in competition,, The Collected Economics Articles of Harold Hotelling, (1990), 50.  doi: 10.1007/978-1-4613-8905-7_4.  Google Scholar

[15]

P. Lederer and A. Hurter, Competition of Firms: Discriminatory pricing and location,, Econometrica, 54 (1986), 623.  doi: 10.2307/1911311.  Google Scholar

[16]

M. J. Osborne and C. Pitchick, Equilibrium in Hotelling's model of spatial competition,, Econometrica, 55 (1987), 911.  doi: 10.2307/1911035.  Google Scholar

[17]

A. A. Pinto, F. A. Ferreira, M. Ferreira and B. M. P. M. Oliveira, Cournot Duopoly with Competition in the R&D Expenditures, in, Proceedings of Symposia in Pure Mathematics, 7 (2007), 1060311.  doi: 10.1002/pamm.200701031.  Google Scholar

[18]

A. A. Pinto, B. M. P. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R&D strategies of the firms, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 415.  doi: 10.1007/978-1-4020-8678-6_36.  Google Scholar

[19]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477.  doi: 10.1080/02331934.2014.917304.  Google Scholar

[20]

A. A. Pinto and T. Parreira, A Hotelling-type Network, in, Dynamics, 1 (2011), 709.  doi: 10.1007/978-3-642-11456-4_45.  Google Scholar

[21]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141.  doi: 10.2307/3003323.  Google Scholar

[22]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213.  doi: 10.1016/0167-7187(94)00449-C.  Google Scholar

[23]

S. Ziss, Entry deterrence, cost advantage and horizontal product differentiation,, Regional Science and Urban Economics, 23 (1993), 523.  doi: 10.1016/0166-0462(93)90045-G.  Google Scholar

show all references

References:
[1]

C. D'Aspremont, J. Gabszewicz and J.-F. Thisse, On Hotelling's "Stability in Competition'',, Econometrica, 47 (1979), 1145.  doi: 10.2307/1911955.  Google Scholar

[2]

R. Biscaia and P. Sarmento, Spatial Competition and Firms' Location Decisions under Cost Uncertainty, in, FEP Working Papers no. 445, (2012).   Google Scholar

[3]

M. Boyer, J. Laffont, P. Mahenc and M. Moreaux, Location distortions under incomplete information,, Regional Science and Urban Economics, 24 (1994), 409.  doi: 10.1016/0166-0462(93)02048-8.  Google Scholar

[4]

M. Boyer, P. Mahenc and M. Moreaux, Asymmetric information and product differentiation,, Regional Science and Urban Economics, 33 (2003), 93.  doi: 10.1016/S0166-0462(01)00108-9.  Google Scholar

[5]

F. Ferreira, F. A. Ferreira, M. Ferreira and A. A. Pinto, Flexibility in a Stackelberg leadership with differentiated goods,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 877.  doi: 10.1080/02331934.2013.836649.  Google Scholar

[6]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Price-setting dynamical duopoly with incomplete information, in, Nonlinear Science and Complexity, (2011), 397.  doi: 10.1007/978-90-481-9884-9_46.  Google Scholar

[7]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Flexibility in stackelberg leadership, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 399.  doi: 10.1007/978-1-4020-8678-6_34.  Google Scholar

[8]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Bayesian price leadership, in, Mathematical Methods in Engineering, (2007), 371.  doi: 10.1007/978-1-4020-5678-9_32.  Google Scholar

[9]

F. Ferreira, F. A. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, in, Mathematical Methods in Engineering, (2007), 359.  doi: 10.1007/978-1-4020-5678-9_31.  Google Scholar

[10]

M. Ferreira, I. P. Figueiredo, B. M. P. M. Oliveira and A. A. Pinto, Strategic optimization in R&D Investment,, Optimization: A Journal of Mathematical Programming and Operations Research, 61 (2012), 1013.  doi: 10.1080/02331934.2011.653357.  Google Scholar

[11]

F. A. Ferreira and A. A. Pinto, Uncertainty on a Bertrand duopoly with product differentiation, in, Nonlinear Science and Complexity, (2011), 389.  doi: 10.1007/978-90-481-9884-9_45.  Google Scholar

[12]

R. Gibbons, A Primer in Game Theory,, Prentice Hall, (1992).   Google Scholar

[13]

D. Graitson, Spatial competition á la Hotelling: A selective survey,, The Journal of Industrial Economics, 31 (1982), 11.  doi: 10.2307/2098001.  Google Scholar

[14]

H. Hotelling, Stability in competition,, The Collected Economics Articles of Harold Hotelling, (1990), 50.  doi: 10.1007/978-1-4613-8905-7_4.  Google Scholar

[15]

P. Lederer and A. Hurter, Competition of Firms: Discriminatory pricing and location,, Econometrica, 54 (1986), 623.  doi: 10.2307/1911311.  Google Scholar

[16]

M. J. Osborne and C. Pitchick, Equilibrium in Hotelling's model of spatial competition,, Econometrica, 55 (1987), 911.  doi: 10.2307/1911035.  Google Scholar

[17]

A. A. Pinto, F. A. Ferreira, M. Ferreira and B. M. P. M. Oliveira, Cournot Duopoly with Competition in the R&D Expenditures, in, Proceedings of Symposia in Pure Mathematics, 7 (2007), 1060311.  doi: 10.1002/pamm.200701031.  Google Scholar

[18]

A. A. Pinto, B. M. P. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R&D strategies of the firms, in, Intelligent Engineering Systems and Computational Cybernetics, (2009), 415.  doi: 10.1007/978-1-4020-8678-6_36.  Google Scholar

[19]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs,, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477.  doi: 10.1080/02331934.2014.917304.  Google Scholar

[20]

A. A. Pinto and T. Parreira, A Hotelling-type Network, in, Dynamics, 1 (2011), 709.  doi: 10.1007/978-3-642-11456-4_45.  Google Scholar

[21]

S. Salop, Monopolistic competition with outside goods,, Bell Journal of Economics, 10 (1979), 141.  doi: 10.2307/3003323.  Google Scholar

[22]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition,, International Journal of Economic Theory, 13 (1995), 213.  doi: 10.1016/0167-7187(94)00449-C.  Google Scholar

[23]

S. Ziss, Entry deterrence, cost advantage and horizontal product differentiation,, Regional Science and Urban Economics, 23 (1993), 523.  doi: 10.1016/0166-0462(93)90045-G.  Google Scholar

[1]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[2]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[3]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[4]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[5]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[6]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[7]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[8]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[9]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[14]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[15]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[16]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[17]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[18]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[19]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

 Impact Factor: 

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]