April  2016, 3(2): 143-151. doi: 10.3934/jdg.2016007

The profit-sharing rule that maximizes sustainability of cartel agreements

1. 

Toulouse School of Economics, 21 Allée de Brienne, 31000 Toulouse, France

2. 

CEF.UP, Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

Received  October 2015 Revised  April 2016 Published  April 2016

We study the profit-sharing rule that maximizes the sustainability of cartel agreements when firms can make side-payments. This rule is such that the critical discount factor is the same for all firms (``balanced temptation''). If a cartel applies this rule, contrarily to the typical finding in the literature, asymmetries among firms may increase the sustainability of the cartel. In an illustrating example of a Cournot duopoly with asymmetric production costs, the sustainability of collusion is maximal when firms are extremely asymmetric.
Citation: João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics & Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007
References:
[1]

D. Abreu, Extremal equilibria of oligopolistic supergames,, Journal of Economic Theory, 39 (1986), 191.  doi: 10.1016/0022-0531(86)90025-6.  Google Scholar

[2]

H. Bae, A price-setting supergame between two heterogeneous firms,, European Economic Review, 31 (1987), 1159.  doi: 10.1016/S0014-2921(87)80011-9.  Google Scholar

[3]

I. Bos and J. E. Harrington, Jr., Endogenous cartel formation with heterogeneous firms,, RAND Journal of Economics, 41 (2010), 92.  doi: 10.1111/j.1756-2171.2009.00091.x.  Google Scholar

[4]

A. Brandão, J. Pinho and H. Vasconcelos, Asymmetric collusion with growing demand,, Journal of Industry, 14 (2014), 429.   Google Scholar

[5]

D. R. Collie, Sustaining Collusion with Asymmetric Costs,, mimeo, (2004).   Google Scholar

[6]

O. Compte, F. Jenny and P. Rey, Capacity constraints, mergers and collusion,, European Economic Review, 46 (2002), 1.  doi: 10.1016/S0014-2921(01)00099-X.  Google Scholar

[7]

C. d'Aspremont, A. Jacquemin, J. J. Gabszewicz and J. A. Weymark, On the stability of collusive price leadership,, Canadian Journal of Economics, 16 (1983), 17.  doi: 10.2307/134972.  Google Scholar

[8]

J. W. Friedman, A non-cooperative equilibrium for supergames,, Review of Economic Studies, 38 (1971), 1.   Google Scholar

[9]

M. Ganslandt, L. Persson and H. Vasconcelos, Endogenous mergers and collusion in asymmetric market structures,, Economica, 79 (2012), 766.   Google Scholar

[10]

J. E. Harrington, Jr., Collusion among asymmetric firms: The case of different discount factors,, International Journal of Industrial Organization, 7 (1989), 289.  doi: 10.1016/0167-7187(89)90025-8.  Google Scholar

[11]

J. E. Harrington, Jr., The determination of price and output quotas in a heterogeneous cartel,, International Economic Review, 32 (1991), 767.  doi: 10.2307/2527033.  Google Scholar

[12]

K.-U. Kühn, The Coordinated Effects of Mergers in Differentiated Products Markets,, CEPR Discussion Paper no. 4769, (4769).   Google Scholar

[13]

M. C. Levenstein and V. Y. Suslow, What determines cartel success?,, Journal of Economic Literature, 44 (2006), 43.   Google Scholar

[14]

J. Miklós-Thal, Optimal collusion under cost asymmetry,, Economic Theory, 46 (2011), 99.  doi: 10.1007/s00199-009-0502-9.  Google Scholar

[15]

M. Motta, Competition Policy: Theory and Practice,, $7^{th}$ printing, (2004).  doi: 10.1017/CBO9780511804038.  Google Scholar

[16]

M. J. Osborne and C. Pitchik, Profit-sharing in a collusive industry,, European Economic Review, 22 (1983), 59.  doi: 10.1016/0014-2921(83)90089-2.  Google Scholar

[17]

M. K. Perry and R. H. Porter, Oligopoly and the incentive for horizontal merger,, American Economic Review, 75 (1985), 219.   Google Scholar

[18]

H. Vasconcelos, Tacit collusion, cost asymmetries and mergers,, RAND Journal of Economics, 36 (2005), 39.   Google Scholar

[19]

F. Verboven, Collusive behavior with heterogeneous firms,, Journal of Economic Behavior and Organization, 33 (1997), 121.  doi: 10.1016/S0167-2681(97)00025-5.  Google Scholar

show all references

References:
[1]

D. Abreu, Extremal equilibria of oligopolistic supergames,, Journal of Economic Theory, 39 (1986), 191.  doi: 10.1016/0022-0531(86)90025-6.  Google Scholar

[2]

H. Bae, A price-setting supergame between two heterogeneous firms,, European Economic Review, 31 (1987), 1159.  doi: 10.1016/S0014-2921(87)80011-9.  Google Scholar

[3]

I. Bos and J. E. Harrington, Jr., Endogenous cartel formation with heterogeneous firms,, RAND Journal of Economics, 41 (2010), 92.  doi: 10.1111/j.1756-2171.2009.00091.x.  Google Scholar

[4]

A. Brandão, J. Pinho and H. Vasconcelos, Asymmetric collusion with growing demand,, Journal of Industry, 14 (2014), 429.   Google Scholar

[5]

D. R. Collie, Sustaining Collusion with Asymmetric Costs,, mimeo, (2004).   Google Scholar

[6]

O. Compte, F. Jenny and P. Rey, Capacity constraints, mergers and collusion,, European Economic Review, 46 (2002), 1.  doi: 10.1016/S0014-2921(01)00099-X.  Google Scholar

[7]

C. d'Aspremont, A. Jacquemin, J. J. Gabszewicz and J. A. Weymark, On the stability of collusive price leadership,, Canadian Journal of Economics, 16 (1983), 17.  doi: 10.2307/134972.  Google Scholar

[8]

J. W. Friedman, A non-cooperative equilibrium for supergames,, Review of Economic Studies, 38 (1971), 1.   Google Scholar

[9]

M. Ganslandt, L. Persson and H. Vasconcelos, Endogenous mergers and collusion in asymmetric market structures,, Economica, 79 (2012), 766.   Google Scholar

[10]

J. E. Harrington, Jr., Collusion among asymmetric firms: The case of different discount factors,, International Journal of Industrial Organization, 7 (1989), 289.  doi: 10.1016/0167-7187(89)90025-8.  Google Scholar

[11]

J. E. Harrington, Jr., The determination of price and output quotas in a heterogeneous cartel,, International Economic Review, 32 (1991), 767.  doi: 10.2307/2527033.  Google Scholar

[12]

K.-U. Kühn, The Coordinated Effects of Mergers in Differentiated Products Markets,, CEPR Discussion Paper no. 4769, (4769).   Google Scholar

[13]

M. C. Levenstein and V. Y. Suslow, What determines cartel success?,, Journal of Economic Literature, 44 (2006), 43.   Google Scholar

[14]

J. Miklós-Thal, Optimal collusion under cost asymmetry,, Economic Theory, 46 (2011), 99.  doi: 10.1007/s00199-009-0502-9.  Google Scholar

[15]

M. Motta, Competition Policy: Theory and Practice,, $7^{th}$ printing, (2004).  doi: 10.1017/CBO9780511804038.  Google Scholar

[16]

M. J. Osborne and C. Pitchik, Profit-sharing in a collusive industry,, European Economic Review, 22 (1983), 59.  doi: 10.1016/0014-2921(83)90089-2.  Google Scholar

[17]

M. K. Perry and R. H. Porter, Oligopoly and the incentive for horizontal merger,, American Economic Review, 75 (1985), 219.   Google Scholar

[18]

H. Vasconcelos, Tacit collusion, cost asymmetries and mergers,, RAND Journal of Economics, 36 (2005), 39.   Google Scholar

[19]

F. Verboven, Collusive behavior with heterogeneous firms,, Journal of Economic Behavior and Organization, 33 (1997), 121.  doi: 10.1016/S0167-2681(97)00025-5.  Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Marta Biancardi, Lucia Maddalena, Giovanni Villani. Water taxes and fines imposed on legal and illegal firms exploiting groudwater. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021008

[3]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[4]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[5]

Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043

[6]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[7]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[8]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[9]

Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149

[10]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[11]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[12]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[13]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[16]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[17]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[18]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[19]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[20]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

 Impact Factor: 

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]