July  2016, 3(3): 217-223. doi: 10.3934/jdg.2016011

An asymptotic expression for the fixation probability of a mutant in star graphs

1. 

Departamento de Matemática and Centro de Matemática e Aplicações, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal

Received  July 2015 Revised  February 2016 Published  July 2016

We consider the Moran process in a graph called the ``star'' and obtain the asymptotic expression for the fixation probability of a single mutant when the size of the graph is large. The expression obtained corrects the previously known expression announced in reference [E Lieberman, C Hauert, and MA Nowak. Evolutionary dynamics on graphs. Nature, 433(7023):312–316, 2005] and further studied in [M. Broom and J. Rychtar. An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc. R. Soc. A-Math. Phys. Eng. Sci., 464(2098):2609–2627, 2008]. We also show that the star graph is an accelerator of evolution, if the graph is large enough.
Citation: Fabio A. C. C. Chalub. An asymptotic expression for the fixation probability of a mutant in star graphs. Journal of Dynamics & Games, 2016, 3 (3) : 217-223. doi: 10.3934/jdg.2016011
References:
[1]

B. Allen and M. Nowak, Games on graphs,, EMS Surv. Math. Sci., 1 (2014), 113.  doi: 10.4171/EMSS/3.  Google Scholar

[2]

M. Broom, C. Hadjichrysanthou and J. Rychtar, Evolutionary games on graphs and the speed of the evolutionary process,, Proc. R. Soc. A-Math. Phys. Eng. Sci., 466 (2010), 1327.  doi: 10.1098/rspa.2009.0487.  Google Scholar

[3]

M. Broom and J. Rychtář, Game-theoretical Models in Biology,, CRC Press, (2013).   Google Scholar

[4]

M. Broom and J. Rychtar, An analysis of the fixation probability of a mutant on special classes of non-directed graphs,, Proc. R. Soc. A-Math. Phys. Eng. Sci., 464 (2008), 2609.  doi: 10.1098/rspa.2008.0058.  Google Scholar

[5]

J. Diaz, L. A. Goldberg, G. B. Mertzios, D. Richerby, M. Serna and P. G. Spirakis, On the fixation probability of superstars,, Proc. R. Soc. A-Math. Phys. Eng. Sci., 469 (2013).  doi: 10.1098/rspa.2013.0193.  Google Scholar

[6]

R. A. Fisher, The Genetical Theory of Natural Selection,, Clarendon Press, (1999).   Google Scholar

[7]

M. Frean, P. B. Rainey and A. Traulsen, The effect of population structure on the rate of evolution,, Proc. R. Soc. B-Biol. Sci., 280 (2013).  doi: 10.1098/rspb.2013.0211.  Google Scholar

[8]

B. Houchmandzadeh and M. Vallade, Exact results for fixation probability of bithermal evolutionary graphs,, Biosystems, 112 (2013), 49.   Google Scholar

[9]

E. Lieberman, C. Hauert and M. A. Nowak, Evolutionary dynamics on graphs,, Nature, 433 (2005), 312.  doi: 10.1038/nature03204.  Google Scholar

[10]

P. A. P. Moran, The Statistical Processes of Evolutionary Theory,, Clarendon, (1962).   Google Scholar

[11]

M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life,, The Belknap Press of Harvard University Press, (2006).   Google Scholar

[12]

P. Shakarian, P. Roos and A. Johnson, A review of evolutionary graph theory with applications to game theory,, Biosystems, 107 (2012), 66.  doi: 10.1016/j.biosystems.2011.09.006.  Google Scholar

[13]

A. Traulsen, M. A. Nowak and J. M. Pacheco, Stochastic dynamics of invasion and fixation,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011909.  Google Scholar

[14]

C. Zhang, Y. Wu, W. Liu and X. Yang, Fixation probabilities on complete star and bipartite digraphs,, Discrete Dyn. Nat. Soc., (2012).   Google Scholar

[15]

S. Wright, Evolution in mendelian populations,, Genetics, 16 (1931), 97.   Google Scholar

show all references

References:
[1]

B. Allen and M. Nowak, Games on graphs,, EMS Surv. Math. Sci., 1 (2014), 113.  doi: 10.4171/EMSS/3.  Google Scholar

[2]

M. Broom, C. Hadjichrysanthou and J. Rychtar, Evolutionary games on graphs and the speed of the evolutionary process,, Proc. R. Soc. A-Math. Phys. Eng. Sci., 466 (2010), 1327.  doi: 10.1098/rspa.2009.0487.  Google Scholar

[3]

M. Broom and J. Rychtář, Game-theoretical Models in Biology,, CRC Press, (2013).   Google Scholar

[4]

M. Broom and J. Rychtar, An analysis of the fixation probability of a mutant on special classes of non-directed graphs,, Proc. R. Soc. A-Math. Phys. Eng. Sci., 464 (2008), 2609.  doi: 10.1098/rspa.2008.0058.  Google Scholar

[5]

J. Diaz, L. A. Goldberg, G. B. Mertzios, D. Richerby, M. Serna and P. G. Spirakis, On the fixation probability of superstars,, Proc. R. Soc. A-Math. Phys. Eng. Sci., 469 (2013).  doi: 10.1098/rspa.2013.0193.  Google Scholar

[6]

R. A. Fisher, The Genetical Theory of Natural Selection,, Clarendon Press, (1999).   Google Scholar

[7]

M. Frean, P. B. Rainey and A. Traulsen, The effect of population structure on the rate of evolution,, Proc. R. Soc. B-Biol. Sci., 280 (2013).  doi: 10.1098/rspb.2013.0211.  Google Scholar

[8]

B. Houchmandzadeh and M. Vallade, Exact results for fixation probability of bithermal evolutionary graphs,, Biosystems, 112 (2013), 49.   Google Scholar

[9]

E. Lieberman, C. Hauert and M. A. Nowak, Evolutionary dynamics on graphs,, Nature, 433 (2005), 312.  doi: 10.1038/nature03204.  Google Scholar

[10]

P. A. P. Moran, The Statistical Processes of Evolutionary Theory,, Clarendon, (1962).   Google Scholar

[11]

M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life,, The Belknap Press of Harvard University Press, (2006).   Google Scholar

[12]

P. Shakarian, P. Roos and A. Johnson, A review of evolutionary graph theory with applications to game theory,, Biosystems, 107 (2012), 66.  doi: 10.1016/j.biosystems.2011.09.006.  Google Scholar

[13]

A. Traulsen, M. A. Nowak and J. M. Pacheco, Stochastic dynamics of invasion and fixation,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011909.  Google Scholar

[14]

C. Zhang, Y. Wu, W. Liu and X. Yang, Fixation probabilities on complete star and bipartite digraphs,, Discrete Dyn. Nat. Soc., (2012).   Google Scholar

[15]

S. Wright, Evolution in mendelian populations,, Genetics, 16 (1931), 97.   Google Scholar

[1]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[2]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[3]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[5]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[6]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[7]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[8]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[9]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[11]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[12]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[13]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[16]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[19]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[20]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]