July  2016, 3(3): 279-301. doi: 10.3934/jdg.2016015

Evolution and jump in a Walrasian framework

1. 

Facultad de Economa de la UASLP, Aveninda Pintores S/N, San Luis Potosi, 78280, Mexico, Mexico

Received  May 2016 Revised  September 2016 Published  October 2016

Lower profit rates play an importan role in the evolution of an ownership private economy. We argue that if managers look to maximize profits rates, then the decision to change, to those branches, or technologies, that offer higher rates of profits, plays an important role in the characterization of economies. If managers choose to produce according to those technologies that promise higher profit rates, then along the time, the distribution of the firms over the set of available technologies change, and therefore the economic fundamentals change. Under conditions of imperfect information, the imitation of the most successful firms plays can a decisive role in deciding how to produce. Along a path of Walrasian equilibria, regular economies can become singular and if this occurs, big changes must be expected after decisions of the firms for the next period.
Citation: Elvio Accinelli, Enrique Covarrubias. Evolution and jump in a Walrasian framework. Journal of Dynamics and Games, 2016, 3 (3) : 279-301. doi: 10.3934/jdg.2016015
References:
[1]

E. Accinelli and M. Puchet, A Classification of infinite dimensional Walrasian economies and the economic crisis, In Dynamic, Game and Science (in Honour of Maurício Peixoto and David Rand) Series, Springer-Veralg, 2 (2011), 55-77. doi: 10.1007/978-3-642-14788-3_4.

[2]

C. D. Aliprantis, D. J. Brown and O. Burkinshaw, Existence and Optimaility of Competitive Equilibria, Springer Verlag, 1990. doi: 10.1007/978-3-642-61521-4.

[3]

Y. Balasko, The Equilibrium Manifold Postmodern Developments in the Theory of General Economic Equilibrium, The Mit Press, 2009. doi: 10.7551/mitpress/9780262026543.001.0001.

[4]

A. Ben-Shohama, R. Serrano and O. Volijc, The evolution of exchange, Journal of Economic Theory, 114 (2004), 310-328. doi: 10.1016/S0022-0531(03)00112-1.

[5]

G. Gigerenzer and D.G. Goldstein, Reasoning the fast and frugal way: Models of bounded rationality psychological review by the american psychological association, Inc, 103 (1996), 650-669. doi: 10.1016/S0022-0531(03)00112-1.

[6]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, 2004.

[7]

M. Kandori, R. Serrano and O. Volij, Decentralized Trade, Random Utility and the Evolution of Social Welfare, Working Paper, Department of Economics, University of Tokyo ,2004. doi: 10.1016/S0022-0531(03)00112-1.

[8]

A. Mas-Colell, The Theory of General Equilibrium: A Differentiable Approach, Cambrdige University Press, 1989.

[9]

J. Perla, Equilibrium Imitation and Growth, Journal of Political Economy, 2014. doi: 10.1016/S0022-0531(03)00112-1.

[10]

A. Sard, The measure of the critical values of differentiable maps, Bulletin of the American Mathematical Society, 48 (1942), 883-890. doi: 10.1090/S0002-9904-1942-07811-6.

[11]

K. H. Schlag, Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits, Journal of Economic Theory, 78 (1998), 130-156. doi: 10.1006/jeth.1997.2347.

[12]

F. Vega Redondo, The evolution of walrasian behavior, Econometrica, 65 (1997), 375-384. doi: 10.1016/S0022-0531(03)00112-1.

[13]

J. W. Weibull, Evolutionary Game Thery, The Mit Press, 1985.

show all references

References:
[1]

E. Accinelli and M. Puchet, A Classification of infinite dimensional Walrasian economies and the economic crisis, In Dynamic, Game and Science (in Honour of Maurício Peixoto and David Rand) Series, Springer-Veralg, 2 (2011), 55-77. doi: 10.1007/978-3-642-14788-3_4.

[2]

C. D. Aliprantis, D. J. Brown and O. Burkinshaw, Existence and Optimaility of Competitive Equilibria, Springer Verlag, 1990. doi: 10.1007/978-3-642-61521-4.

[3]

Y. Balasko, The Equilibrium Manifold Postmodern Developments in the Theory of General Economic Equilibrium, The Mit Press, 2009. doi: 10.7551/mitpress/9780262026543.001.0001.

[4]

A. Ben-Shohama, R. Serrano and O. Volijc, The evolution of exchange, Journal of Economic Theory, 114 (2004), 310-328. doi: 10.1016/S0022-0531(03)00112-1.

[5]

G. Gigerenzer and D.G. Goldstein, Reasoning the fast and frugal way: Models of bounded rationality psychological review by the american psychological association, Inc, 103 (1996), 650-669. doi: 10.1016/S0022-0531(03)00112-1.

[6]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, 2004.

[7]

M. Kandori, R. Serrano and O. Volij, Decentralized Trade, Random Utility and the Evolution of Social Welfare, Working Paper, Department of Economics, University of Tokyo ,2004. doi: 10.1016/S0022-0531(03)00112-1.

[8]

A. Mas-Colell, The Theory of General Equilibrium: A Differentiable Approach, Cambrdige University Press, 1989.

[9]

J. Perla, Equilibrium Imitation and Growth, Journal of Political Economy, 2014. doi: 10.1016/S0022-0531(03)00112-1.

[10]

A. Sard, The measure of the critical values of differentiable maps, Bulletin of the American Mathematical Society, 48 (1942), 883-890. doi: 10.1090/S0002-9904-1942-07811-6.

[11]

K. H. Schlag, Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits, Journal of Economic Theory, 78 (1998), 130-156. doi: 10.1006/jeth.1997.2347.

[12]

F. Vega Redondo, The evolution of walrasian behavior, Econometrica, 65 (1997), 375-384. doi: 10.1016/S0022-0531(03)00112-1.

[13]

J. W. Weibull, Evolutionary Game Thery, The Mit Press, 1985.

[1]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

[2]

Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861

[3]

Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51

[4]

Kelei Wang. The singular limit problem in a phase separation model with different diffusion rates $^*$. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 483-512. doi: 10.3934/dcds.2015.35.483

[5]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics and Games, 2021, 8 (1) : 69-99. doi: 10.3934/jdg.2021002

[6]

Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic and Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219

[7]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic and Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009

[8]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[9]

Kirk Kayser, Dieter Armbruster, Michael Herty. Kinetic models of conservative economies with need-based transfers as welfare. Kinetic and Related Models, 2020, 13 (1) : 169-185. doi: 10.3934/krm.2020006

[10]

Mingxia Li, Kebing Chen, Shengbin Wang. Retail outsourcing strategy in Cournot & Bertrand retail competitions with economies of scale. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021194

[11]

Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks and Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143

[12]

João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics and Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007

[13]

Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 127-142. doi: 10.3934/naco.2019043

[14]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[15]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[16]

Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186

[17]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure and Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[18]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[19]

Yang Liu, Zhiying Liu, Kaifei Xu. Imitative innovation or independent innovation strategic choice of emerging economies in non-cooperative innovation competition. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022023

[20]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

 Impact Factor: 

Metrics

  • PDF downloads (261)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]