July  2016, 3(3): 279-301. doi: 10.3934/jdg.2016015

Evolution and jump in a Walrasian framework

1. 

Facultad de Economa de la UASLP, Aveninda Pintores S/N, San Luis Potosi, 78280, Mexico, Mexico

Received  May 2016 Revised  September 2016 Published  October 2016

Lower profit rates play an importan role in the evolution of an ownership private economy. We argue that if managers look to maximize profits rates, then the decision to change, to those branches, or technologies, that offer higher rates of profits, plays an important role in the characterization of economies. If managers choose to produce according to those technologies that promise higher profit rates, then along the time, the distribution of the firms over the set of available technologies change, and therefore the economic fundamentals change. Under conditions of imperfect information, the imitation of the most successful firms plays can a decisive role in deciding how to produce. Along a path of Walrasian equilibria, regular economies can become singular and if this occurs, big changes must be expected after decisions of the firms for the next period.
Citation: Elvio Accinelli, Enrique Covarrubias. Evolution and jump in a Walrasian framework. Journal of Dynamics & Games, 2016, 3 (3) : 279-301. doi: 10.3934/jdg.2016015
References:
[1]

E. Accinelli and M. Puchet, A Classification of infinite dimensional Walrasian economies and the economic crisis,, In Dynamic, 2 (2011), 55.  doi: 10.1007/978-3-642-14788-3_4.  Google Scholar

[2]

C. D. Aliprantis, D. J. Brown and O. Burkinshaw, Existence and Optimaility of Competitive Equilibria,, Springer Verlag, (1990).  doi: 10.1007/978-3-642-61521-4.  Google Scholar

[3]

Y. Balasko, The Equilibrium Manifold Postmodern Developments in the Theory of General Economic Equilibrium,, The Mit Press, (2009).  doi: 10.7551/mitpress/9780262026543.001.0001.  Google Scholar

[4]

A. Ben-Shohama, R. Serrano and O. Volijc, The evolution of exchange,, Journal of Economic Theory, 114 (2004), 310.  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[5]

G. Gigerenzer and D.G. Goldstein, Reasoning the fast and frugal way: Models of bounded rationality psychological review by the american psychological association,, Inc, 103 (1996), 650.  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[6]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos,, Academic Press, (2004).   Google Scholar

[7]

M. Kandori, R. Serrano and O. Volij, Decentralized Trade, Random Utility and the Evolution of Social Welfare, Working Paper,, Department of Economics, ().  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[8]

A. Mas-Colell, The Theory of General Equilibrium: A Differentiable Approach,, Cambrdige University Press, (1989).   Google Scholar

[9]

J. Perla, Equilibrium Imitation and Growth,, Journal of Political Economy, (2014).  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[10]

A. Sard, The measure of the critical values of differentiable maps,, Bulletin of the American Mathematical Society, 48 (1942), 883.  doi: 10.1090/S0002-9904-1942-07811-6.  Google Scholar

[11]

K. H. Schlag, Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits,, Journal of Economic Theory, 78 (1998), 130.  doi: 10.1006/jeth.1997.2347.  Google Scholar

[12]

F. Vega Redondo, The evolution of walrasian behavior,, Econometrica, 65 (1997), 375.  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[13]

J. W. Weibull, Evolutionary Game Thery,, The Mit Press, (1985).   Google Scholar

show all references

References:
[1]

E. Accinelli and M. Puchet, A Classification of infinite dimensional Walrasian economies and the economic crisis,, In Dynamic, 2 (2011), 55.  doi: 10.1007/978-3-642-14788-3_4.  Google Scholar

[2]

C. D. Aliprantis, D. J. Brown and O. Burkinshaw, Existence and Optimaility of Competitive Equilibria,, Springer Verlag, (1990).  doi: 10.1007/978-3-642-61521-4.  Google Scholar

[3]

Y. Balasko, The Equilibrium Manifold Postmodern Developments in the Theory of General Economic Equilibrium,, The Mit Press, (2009).  doi: 10.7551/mitpress/9780262026543.001.0001.  Google Scholar

[4]

A. Ben-Shohama, R. Serrano and O. Volijc, The evolution of exchange,, Journal of Economic Theory, 114 (2004), 310.  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[5]

G. Gigerenzer and D.G. Goldstein, Reasoning the fast and frugal way: Models of bounded rationality psychological review by the american psychological association,, Inc, 103 (1996), 650.  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[6]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos,, Academic Press, (2004).   Google Scholar

[7]

M. Kandori, R. Serrano and O. Volij, Decentralized Trade, Random Utility and the Evolution of Social Welfare, Working Paper,, Department of Economics, ().  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[8]

A. Mas-Colell, The Theory of General Equilibrium: A Differentiable Approach,, Cambrdige University Press, (1989).   Google Scholar

[9]

J. Perla, Equilibrium Imitation and Growth,, Journal of Political Economy, (2014).  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[10]

A. Sard, The measure of the critical values of differentiable maps,, Bulletin of the American Mathematical Society, 48 (1942), 883.  doi: 10.1090/S0002-9904-1942-07811-6.  Google Scholar

[11]

K. H. Schlag, Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits,, Journal of Economic Theory, 78 (1998), 130.  doi: 10.1006/jeth.1997.2347.  Google Scholar

[12]

F. Vega Redondo, The evolution of walrasian behavior,, Econometrica, 65 (1997), 375.  doi: 10.1016/S0022-0531(03)00112-1.  Google Scholar

[13]

J. W. Weibull, Evolutionary Game Thery,, The Mit Press, (1985).   Google Scholar

[1]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

[2]

Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861

[3]

Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51

[4]

Kelei Wang. The singular limit problem in a phase separation model with different diffusion rates $^*$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 483-512. doi: 10.3934/dcds.2015.35.483

[5]

Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic & Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219

[6]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[7]

Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks & Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143

[8]

João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics & Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007

[9]

Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019043

[10]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[11]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[12]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[13]

Taofeng Ye, Shaohui Ma. Discount-offering and demand-rejection decisions for substitutable products with different profit levels. Journal of Industrial & Management Optimization, 2016, 12 (1) : 45-71. doi: 10.3934/jimo.2016.12.45

[14]

Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95

[15]

Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845

[16]

Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100

[17]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[18]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

[19]

Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415

[20]

Peter Scott and Gadde A. Swarup. Regular neighbourhoods and canonical decompositions for groups. Electronic Research Announcements, 2002, 8: 20-28.

 Impact Factor: 

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]