Citation: |
[1] |
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Meand field games: Numerical methods for the planning problem, SIAM J. Control Optim., 50 (2012), 77-109.doi: 10.1137/100790069. |
[2] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications. Birkhauser Boston Inc., Boston, MA, 1997.doi: 10.1007/978-0-8176-4755-1. |
[3] |
T. Borgers, An introduction to the Theory of Mechanism Design, 2015. doi: 10.1093/acprof:oso/9780199734023.001.0001. |
[4] |
P. Cardaliaguet, Notes on Mean Field Games, 2012. |
[5] |
H. Gintis, Game Theory Evolving, Princeton University Press, 2009. |
[6] |
O. Guéant, J. M. Lasry and P. L. Lions, Mean field games and applications, 2009. |
[7] |
M. Lasry and P. L. Lions, Jeux à champ moyen. I. Le cas stationaire, C. R. Math.Acad. Sci. Paris, 343 (2006), 619-625.doi: 10.1016/j.crma.2006.09.019. |
[8] |
M. Lasry and P. L. Lions, Jeux à champ moyen. II. Horizon fini et controle optimal, C. R. Math.Acad. Sci. Paris, 343 (2006), 679-684.doi: 10.1016/j.crma.2006.09.018. |
[9] |
J. M. Lasry and P. L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8. |
[10] |
J. M. Lasry and P. L. Lions, Cours du College de France, 2009. |
[11] |
S. Perkins and D. S. Leslie, Stochastic fictitious play with continuous action sets, Journal of Economic Theory, 152 (2014), 179-213.doi: 10.1016/j.jet.2014.04.008. |
[12] |
A. Porretta, Weak solutions to Fokker Planck equations and mean field games, Archive for Rational Mechanics and Analysis, 216 (2015), 1-62.doi: 10.1007/s00205-014-0799-9. |
[13] |
D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer Verlag, 1979. |