\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Interception in differential pursuit/evasion games

Abstract / Introduction Related Papers Cited by
  • A qualitative criterion for a pursuer to intercept a target in a class of differential games is obtained in terms of future cones: Topological cones that contain all attainable trajectories of target or interceptor originating from an initial position. An interception solution exists after some initial time iff the future cone of the target lies within the future cone of the interceptor. The solution may be regarded as a kind of Nash equilibrium. This result is applied to two examples:
    1. The game of Two Cars: The future cone condition is shown to be equivalent to conditions for interception obtained by Cockayne.
    2. Satellite warfare: The future cone for a spacecraft or direct-ascent antisatellite weapon (ASAT) maneuvering in a central gravitational field is obtained and is shown to equal that for a spacecraft which maneuvers solely by means of a single velocity change at the cone vertex.
        The latter result is illustrated with an analysis of the January 2007 interception of the FengYun-1C spacecraft.
    Mathematics Subject Classification: Primary: 49N75; Secondary: 91A23.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Aliprantis and O. Burkinshaw, Principles of Real Analysis, North Holland, New York, 1981.

    [2]

    C. Aliprantis and O. Burkinshaw, Op. cit., North Holland, New York, 1981, 64-65.

    [3]

    R. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Educational Series, American Institute of Aeronautics and Astronautics, New York, 1987.

    [4]

    R. Brooks, Game and information theory analysis of electronic countermeasures in pursuit-evasion games, IEEE Trans. on Syst., Man, Cybern., 38 (2008), 1281-1294.doi: 10.1109/TSMCA.2008.2003970.

    [5]

    S. Cairns, The triangulation problem and its role in analysis, Bull. Amer. Math. Soc., 52 (1946), 545-571.doi: 10.1090/S0002-9904-1946-08610-3.

    [6]

    A. Carter, Anti-satellite weapons, countermeasures, and arms control, U. S. Congress, Office of Technology Assessment OTA-ISC-281, U. S. Government Printing Office, Washington, DC, 1985.

    [7]

    J. Chandra and P. W. Davis, Linear generalizations of Gronwall's inequality, Proceedings of the American Mathematical Society, 60 (1976), 157-160.

    [8]

    S. C. Chu and F. T. Metcalfe, On Gronwall's inequality, Proceedings of the American Mathematical Society, 18 (1967), 439-440.

    [9]

    J. Dong, X. Zhang and X. Jia, Strategies of pursuit-evasion game based on improved potential field and differential game theory for mobile robots, 2012 Second International Conference on Instrumentation & Measurement, Computer, Communication, and Control, 15 (2012), 1452-1455.doi: 10.1109/IMCCC.2012.340.

    [10]

    E. Cockayne, Plane pursuit with curvature constraints, SIAM J. Appl. Math., 15 (1967), 1511-1516.doi: 10.1137/0115133.

    [11]

    S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math., 68 (1946), 214-222.doi: 10.2307/2371832.

    [12]

    R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.

    [13]

    G. Forden, GUI_Missile_Flyout: A general program for simulating ballistic missiles, Science and Global Security, 15 (2006), 133-146.

    [14]

    G. Forden, A Preliminary Analysis of the Chinese ASAT Test, unpublished, MIT, 2008.

    [15]

    A. Friedman, Differential Games, John Wiley and Sons, New York, 1971.

    [16]

    W. Getz and M. Pachter, Capturability in a two-target "game of two cars", J. Guidance and Control, 4 (1981), 15-21.doi: 10.2514/3.19715.

    [17]

    V. Glizer, Homicidal chauffeur game with target set in the shape of a circular angular sector: conditions for existence of a closed barrier, J. Optimization Theory and Applications, 101 (1999), 581-598.doi: 10.1023/A:1021738103941.

    [18]

    V. Glizer, V. Turetsky and J. Shinar, Differential Game with Linear Dynamics and Multiple Information Delays, Proceedings of the $13^{th}$ WSEAS International Conference on Systems, World Scientific and Engineering Academy and Society (WSEAS), (2009), 179-184.

    [19]

    A. Granas and J. Djundji, Fixed Point Theory, Springer, New York, 2003.doi: 10.1007/978-0-387-21593-8.

    [20]

    R. Isaacs, Differential Games, John Wiley and Sons, New York, 1965.

    [21]

    N. Johnson, E. Stansbery, J.-C. Liou, M. Horstman, C. Stokely and D. Whitlock, The characteristics and consequences of the break-up of the FengYun-1C spacecraft, Acta Astronautica, 63 (2008), 128-135.doi: 10.1016/j.actaastro.2007.12.044.

    [22]

    S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math J., 8 (1941), 457-459.doi: 10.1215/S0012-7094-41-00838-4.

    [23]

    J. L. Kelley, General Topology, Van Nostrand, Princeton, 1955.

    [24]

    S. Kumagai, An implicit function theorem: Comment, J. Optimization Th. and A, 31 (1980), 285-288.doi: 10.1007/BF00934117.

    [25]

    J. P. Marec, Optimal Space Trajectories, Elsevier, New York, 1979.

    [26]

    R. K. Maloy, K. Y. Lee and L. H. Sibul, A pursuit-evasion differential game in relative polar coordinates with state estimation, In American Control Conference, 1995. Proceedings of the IEEE, 3 (1995), 2463-2467.doi: 10.1109/ACC.1995.531418.

    [27]

    C. R. F. Maunder, Algebraic Topology, Cambridge University Press, Cambridge-New York, 1980.

    [28]

    T. Miloh, A note on three-dimensional pursuit-evasion game with bounded curvature, IEEE Trans. Automat. Contr., 27 (1982), 739-741.doi: 10.1109/TAC.1982.1102992.

    [29]

    T. Miloh, M. Pachter and A. Segal, The effect of a finite roll rate on the miss-distance of a bank-to-turn missile, Computers Math. Applic., 26 (1993), 43-53.doi: 10.1016/0898-1221(93)90116-D.

    [30]

    J. A. Morgan, Qualitative criterion for interception in a pursuit/evasion game, Proc. Roy. Soc. A., 466 (2010), 1365-1371.doi: 10.1098/rspa.2009.0552.

    [31]

    J. F. Nash, Non-Cooperative Games, Ph.D. thesis, Princeton University in Princeton, 1950.

    [32]

    J. F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. USA, 36 (1950), 48-49.doi: 10.1073/pnas.36.1.48.

    [33]

    S. P. Novikov, Topology of foliations, Trans. Amer. Math. Soc., 14 (1965), 248-278.

    [34]

    C. Pardini and L. Anselmo, Evolution of the Debris Cloud Generated by the FengYun-1C Fragmentation event, Proceedings of the $20^{th}$ ISSFD, Annapolis, Maryland, 2007.

    [35]

    L. S. Pontryagin, On some differential games, J. SIAM Controls, 3 (1965), 49-52.doi: 10.1137/0303004.

    [36]

    L. S. Pontryagin, Lectures on Differential Games, Stanford University, CA (reprinted as DTIC AD724166), 1971.

    [37]

    L. S. Pontryagin, On the evasion process in differential games, Appl. Math and Optimization, 1 (1974/75), 5-19. doi: 10.1007/BF01449022.

    [38]

    L. S. Pontryagin, Linear differential games of pursuit, Math. USSR Sbornik, 40 (1981), 285-303.

    [39]

    E. Roxin, Axiomatic approach in differential games, J. Opt. Theory and A, 3 (1969), 153-163.doi: 10.1007/BF00929440.

    [40]

    E. Spanier, Algebraic Topology, Springer, New York, 1966.

    [41]

    J. Shinar. V. Glizer, and V. Turetsky, A pursuit-evasion game with hybrid pursuer dynamics, European Journal of Control, 15 (2009), 665-684.doi: 10.3166/ejc.15.665-684.

    [42]

    J. Shinar. V. Glizer and V. Turetsky, Robust pursuit of a hybrid evader, Applied Mathematics and Computation, 217 (2010), 1231-1245.doi: 10.1016/j.amc.2010.04.019.

    [43]

    J. Shinar and S. Gutman, Three-Dimensional Optimal Pursuit and Evasion with Bounded Controls, IEEE Trans. Automat. Contr., AC-25 (1980), 492-496.doi: 10.1109/TAC.1980.1102372.

    [44]

    J. Shinar and V. Turetsky, Three-dimensional validation of an integrated estimation/guidance algorithm against randomly maneuvering targets, J. Guidance, Control, and Dynamics, 32 (2009), 1034-1038.

    [45]
    [46]

    D. Y. Stodden and G. D. Galasso, Space system visualization and analysis using the Satellite Orbit Analysis Program (SOAP), IEEE Aerospace Applications Conference Proceedings, Aspen, CO, 2 (1995), 369-387.doi: 10.1109/AERO.1995.468892.

    [47]

    G. Sutton, Rocket Propulsion Elements, John Wiley and Sons, New York, 1992.doi: 10.1063/1.3066790.

    [48]

    L. Tefatsion, Pure strategy nash equilibrium points and the Lefschetz fixed point theorem, International Journal of Game Theory, 12 (1983), 181-191.doi: 10.1007/BF01769884.

    [49]

    W. Walter, Differential and Integral Inequalities, Erbebnisse der Mathematik und ihrer Grenzgebiete,Band 55 Springer-Verlag, New York-Berlin, 1970.

    [50]

    X. Yuhang, 'FengYun 1 meteorological satellite detailed, reprinted in China Science and Technology, JPRS-CST-89-026, Foreign Broadcast Information Service, 1989, 1-6.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(328) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return