October  2016, 3(4): 371-398. doi: 10.3934/jdg.2016020

Optimal strategies for operating energy storage in an arbitrage or smoothing market

1. 

Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom, United Kingdom

2. 

Economics Department, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom

Received  March 2016 Revised  September 2016 Published  October 2016

We characterize cost-minimizing operating strategies for an energy store over a given interval of time $[0,T]$. The cost functional here can represent, for example, a traditional economic cost or a penalty for time-variation of the output from a storage-assisted wind farm or more general imbalance between supply and demand. Our analysis allows for leakage, operating inefficiencies and general cost functionals. In the case where the cost of a store depends only on its instantaneous power output (or input), we present an algorithm to determine the optimal strategies. A key feature is that this algorithm is localized in time, in the sense that the action of the store at a time $t\in[0,T]$ requires cost information over only some usually much shorter subinterval of time $[t,t_k]\subset[t,T].$
Citation: Lisa C Flatley, Robert S MacKay, Michael Waterson. Optimal strategies for operating energy storage in an arbitrage or smoothing market. Journal of Dynamics and Games, 2016, 3 (4) : 371-398. doi: 10.3934/jdg.2016020
References:
[1]

, Compressed Air Energy Storage Power Plants,, BINE Informationsdienst projektinfo 05/07., (). 

[2]

, ADELE - Adiabatic Compressed-Air Energy Storage for Electricity Supply,, RWE Power., (). 

[3]

, \url{https://www.elexonportal.co.uk/}, (). 

[4]

, Energy Storage and Management Study,, AEA, (2010). 

[5]

, Options for low-carbon power sector flexibility to 2050 - a report to the Committee on Climate Change,, Pöyry, (2010). 

[6]

, Study of Compressed Air Energy Storage with Grid and Photovoltaic Energy Generation, Draft Final Report - for Arizona Public Service Company,, Arizona Research Institute for Solar Energy (AZTISE), (2010). 

[7]

M. Aunedi, N. Brandon, D. Jackravut, D. Predrag, D. Pujianto, R. Sansom, G. Strbac, A. Sturt, F. Teng and V. Yufit, Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future - Report for Carbon Trust, (2012).

[8]

M. Black and G. Strbac, Value of bulk energy storage for managing wind power fluctuations, IEEE Transactions on Energy Conversion, 22 (2007), 197-205. doi: 10.1109/TEC.2006.889619.

[9]

J. P. Barton and D. G. Infield, Energy storage and its use with intermittent renewable energy, IEEE Transactions on Energy Conversion, 19 (2004), 441-448. doi: 10.1109/TEC.2003.822305.

[10]

J. Cruise, L. C. Flatley, R. Gibbens and S. Zachary, Optimal Control of Storage Incorporating Market Impact and with Energy Applications, (2015), arXiv:1406.3653v2.

[11]

J. Cruise, L. C. Flatley and S. Zachary, Impact of Storage Competition on Energy Markets, working paper, (2016), https://arxiv.org/abs/1606.05361.

[12]

A. K. Dixit and R. S. Pindyck, Investment Under Uncertainty, Princeton UP, (1994).

[13]

M. Giulietti, L. Grossi and M. Waterson, Price transmission in the UK electricity market: Was NETA beneficial?, Energy Economics, 32 (2010), 1165-1174. doi: 10.1016/j.eneco.2010.01.008.

[14]

P. Grünewald, T. Cockerill, M. Contestabile and P. Pearson, The role of large scale storage in a GB low carbon energy future: Issues and policy challenges, Energy Policy, 39 (2011), 4807-4815.

[15]

N. Löhndorf and S. Minner, Optimal day-ahead trading and storage of renewable energies - an approximate dynamic programming approach, Energy Syst., 1 (2010), 61-77.

[16]

D. J. C. MacKay, Sustainable Energy - without the hot air, Am. J. Phys., 78 (2010), p222. doi: 10.1119/1.3273852.

[17]

R. S. MacKay, S. Slijepčević and J. Stark, Optimal scheduling in a periodic environment, Nonlinearity, 13 (2000), 257-297. doi: 10.1088/0951-7715/13/1/313.

[18]

A. J. Pimm and S. D. Garvey, The economics of hybrid energy storage plant, International Journal of Environmental Studies, (2014), 787-795. doi: 10.1080/00207233.2014.948321.

show all references

References:
[1]

, Compressed Air Energy Storage Power Plants,, BINE Informationsdienst projektinfo 05/07., (). 

[2]

, ADELE - Adiabatic Compressed-Air Energy Storage for Electricity Supply,, RWE Power., (). 

[3]

, \url{https://www.elexonportal.co.uk/}, (). 

[4]

, Energy Storage and Management Study,, AEA, (2010). 

[5]

, Options for low-carbon power sector flexibility to 2050 - a report to the Committee on Climate Change,, Pöyry, (2010). 

[6]

, Study of Compressed Air Energy Storage with Grid and Photovoltaic Energy Generation, Draft Final Report - for Arizona Public Service Company,, Arizona Research Institute for Solar Energy (AZTISE), (2010). 

[7]

M. Aunedi, N. Brandon, D. Jackravut, D. Predrag, D. Pujianto, R. Sansom, G. Strbac, A. Sturt, F. Teng and V. Yufit, Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future - Report for Carbon Trust, (2012).

[8]

M. Black and G. Strbac, Value of bulk energy storage for managing wind power fluctuations, IEEE Transactions on Energy Conversion, 22 (2007), 197-205. doi: 10.1109/TEC.2006.889619.

[9]

J. P. Barton and D. G. Infield, Energy storage and its use with intermittent renewable energy, IEEE Transactions on Energy Conversion, 19 (2004), 441-448. doi: 10.1109/TEC.2003.822305.

[10]

J. Cruise, L. C. Flatley, R. Gibbens and S. Zachary, Optimal Control of Storage Incorporating Market Impact and with Energy Applications, (2015), arXiv:1406.3653v2.

[11]

J. Cruise, L. C. Flatley and S. Zachary, Impact of Storage Competition on Energy Markets, working paper, (2016), https://arxiv.org/abs/1606.05361.

[12]

A. K. Dixit and R. S. Pindyck, Investment Under Uncertainty, Princeton UP, (1994).

[13]

M. Giulietti, L. Grossi and M. Waterson, Price transmission in the UK electricity market: Was NETA beneficial?, Energy Economics, 32 (2010), 1165-1174. doi: 10.1016/j.eneco.2010.01.008.

[14]

P. Grünewald, T. Cockerill, M. Contestabile and P. Pearson, The role of large scale storage in a GB low carbon energy future: Issues and policy challenges, Energy Policy, 39 (2011), 4807-4815.

[15]

N. Löhndorf and S. Minner, Optimal day-ahead trading and storage of renewable energies - an approximate dynamic programming approach, Energy Syst., 1 (2010), 61-77.

[16]

D. J. C. MacKay, Sustainable Energy - without the hot air, Am. J. Phys., 78 (2010), p222. doi: 10.1119/1.3273852.

[17]

R. S. MacKay, S. Slijepčević and J. Stark, Optimal scheduling in a periodic environment, Nonlinearity, 13 (2000), 257-297. doi: 10.1088/0951-7715/13/1/313.

[18]

A. J. Pimm and S. D. Garvey, The economics of hybrid energy storage plant, International Journal of Environmental Studies, (2014), 787-795. doi: 10.1080/00207233.2014.948321.

[1]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[2]

Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401

[3]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial and Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

[4]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[5]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial and Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[6]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial and Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

[7]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial and Management Optimization, 2020, 16 (1) : 103-115. doi: 10.3934/jimo.2018142

[8]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial and Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134

[9]

Cristian Barbarosie, Anca-Maria Toader, Sérgio Lopes. A gradient-type algorithm for constrained optimization with application to microstructure optimization. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1729-1755. doi: 10.3934/dcdsb.2019249

[10]

Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031

[11]

M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial and Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29

[12]

Yunsai Chen, Zhao Yang, Liang Ma, Peng Li, Yongjie Pang, Xin Zhao, Wenyi Yang. Efficient extraction algorithm for local fuzzy features of dynamic images. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1311-1325. doi: 10.3934/dcdss.2019090

[13]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[14]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[15]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[16]

Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301

[17]

Zhenhuan Yang, Yiming Ying, Qilong Min. Online optimization for residential PV-ESS energy system scheduling. Mathematical Foundations of Computing, 2019, 2 (1) : 55-71. doi: 10.3934/mfc.2019005

[18]

Changjun Yu, Honglei Xu, Kok Lay Teo. Preface: Advances in theory and real world applications of control and dynamic optimization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : i-iii. doi: 10.3934/dcdss.2020094

[19]

Bruce D. Craven, Sardar M. N. Islam. Dynamic optimization models in finance: Some extensions to the framework, models, and computation. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1129-1146. doi: 10.3934/jimo.2014.10.1129

[20]

Lianshuan Shi, Enmin Feng, Huanchun Sun, Zhaosheng Feng. A two-step algorithm for layout optimization of structures with discrete variables. Journal of Industrial and Management Optimization, 2007, 3 (3) : 543-552. doi: 10.3934/jimo.2007.3.543

 Impact Factor: 

Metrics

  • PDF downloads (140)
  • HTML views (0)
  • Cited by (4)

[Back to Top]