January  2017, 4(1): 25-39. doi: 10.3934/jdg.2017002

Global analysis of solutions on the Cournot-Theocharis duopoly with variable marginal costs

National and Kapodistrian University of Athens, Department of Economics, Sofokleous 1, 10559, Athens, Greece

* Corresponding author

Received  July 2016 Revised  November 2016 Published  December 2016

In this article, we study the Cournot-Theocharis duopoly with variable marginal cost. We present sufficient conditions such that, both firms enter the market at any stage, remain in the market, and maximize their profit at any stage. We suggest cost implementation strategies, under which the market might benefit from the variability of marginal cost. We exhibit strategies, for which, the variability of marginal cost might be hazardous for the duopoly competitors. We prove that there exist cases, in which the market forms cycles of length six. Within each cycle, there is an interchange between monopolies and duopolies. Finally, we present some new ideas to establish monopoly convergence under certain monopoly conditions.

Citation: Iraklis Kollias, Elias Camouzis, John Leventides. Global analysis of solutions on the Cournot-Theocharis duopoly with variable marginal costs. Journal of Dynamics & Games, 2017, 4 (1) : 25-39. doi: 10.3934/jdg.2017002
References:
[1]

A. AgliariL. Gardini and T. Puu, The dynamics of a triopoly Cournot game, Chaos, Solitons and Fractals, 11 (2000), 2531-2560.  doi: 10.1016/S0960-0779(99)00160-5.  Google Scholar

[2]

C. BurrL. Gardini and F. Szidarovszky, Discrete time dynamic oligopolies with adjustment constraints, Journal of Dynamics and Games, 2 (2015), 65-87.  doi: 10.3934/jdg.2015.2.65.  Google Scholar

[3]

E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures Chapman & Hall/CRC Press, 2008.  Google Scholar

[4]

J. S. Canovas, Reducing competirors in a Cournot-Theocharis oligopoly model, Journal of Difference Equations and Applications, 15 (2009), 153-165.  doi: 10.1080/10236190802006415.  Google Scholar

[5]

A. Cournot, Recherches sur les Principes Mathematiques de la Theorie des Richesses Hachette, Paris, 1838. Google Scholar

[6]

A. Jakimowicz, Stability of the cournot-nash equilibrium in standard oligopoly, Acta Physica Polonica A, 121 (2012), 50-52.   Google Scholar

[7]

T.-Y. Li and J. A. Yorke, Period three implies chaos, The American Mathematical Monthly, 82 (1975), 985-992.   Google Scholar

[8]

T. E. Pallander, Konkurrens och marknadsj$ä$mvikt vid duopolo och oligopol, Ekonomisk Tidskrift, 41 (1939), 124-145,222--250.   Google Scholar

[9]

T. Puu, Rational expectations and the Cournot-Theocharis problem Discrete Dynamics in Nature and Society (2006), Art. ID 32103, 11 pp. doi: 10.1155/DDNS/2006/32103.  Google Scholar

[10]

R. D. Theocharis, On the stability of the cournot solution on the oligopoly problem, Review of Economic Studies, 27 (1959), 133-134.   Google Scholar

show all references

References:
[1]

A. AgliariL. Gardini and T. Puu, The dynamics of a triopoly Cournot game, Chaos, Solitons and Fractals, 11 (2000), 2531-2560.  doi: 10.1016/S0960-0779(99)00160-5.  Google Scholar

[2]

C. BurrL. Gardini and F. Szidarovszky, Discrete time dynamic oligopolies with adjustment constraints, Journal of Dynamics and Games, 2 (2015), 65-87.  doi: 10.3934/jdg.2015.2.65.  Google Scholar

[3]

E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures Chapman & Hall/CRC Press, 2008.  Google Scholar

[4]

J. S. Canovas, Reducing competirors in a Cournot-Theocharis oligopoly model, Journal of Difference Equations and Applications, 15 (2009), 153-165.  doi: 10.1080/10236190802006415.  Google Scholar

[5]

A. Cournot, Recherches sur les Principes Mathematiques de la Theorie des Richesses Hachette, Paris, 1838. Google Scholar

[6]

A. Jakimowicz, Stability of the cournot-nash equilibrium in standard oligopoly, Acta Physica Polonica A, 121 (2012), 50-52.   Google Scholar

[7]

T.-Y. Li and J. A. Yorke, Period three implies chaos, The American Mathematical Monthly, 82 (1975), 985-992.   Google Scholar

[8]

T. E. Pallander, Konkurrens och marknadsj$ä$mvikt vid duopolo och oligopol, Ekonomisk Tidskrift, 41 (1939), 124-145,222--250.   Google Scholar

[9]

T. Puu, Rational expectations and the Cournot-Theocharis problem Discrete Dynamics in Nature and Society (2006), Art. ID 32103, 11 pp. doi: 10.1155/DDNS/2006/32103.  Google Scholar

[10]

R. D. Theocharis, On the stability of the cournot solution on the oligopoly problem, Review of Economic Studies, 27 (1959), 133-134.   Google Scholar

[1]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5905-5923. doi: 10.3934/dcdsb.2021069

[2]

Rabah Amir, Igor V. Evstigneev. A new perspective on the classical Cournot duopoly. Journal of Dynamics & Games, 2017, 4 (4) : 361-367. doi: 10.3934/jdg.2017019

[3]

Jose S. Cánovas, María Muñoz-Guillermo. Monopoly conditions in a Cournot-Theocharis oligopoly model under adaptive expectations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021161

[4]

Bin Zhou, Hailin Sun. Two-stage stochastic variational inequalities for Cournot-Nash equilibrium with risk-averse players under uncertainty. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 521-535. doi: 10.3934/naco.2020049

[5]

Nickolas J. Michelacakis. Strategic delegation effects on Cournot and Stackelberg competition. Journal of Dynamics & Games, 2018, 5 (3) : 231-242. doi: 10.3934/jdg.2018015

[6]

Mingxia Li, Kebing Chen, Shengbin Wang. Retail outsourcing strategy in Cournot & Bertrand retail competitions with economies of scale. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021194

[7]

Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111

[8]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[9]

Deren Han, Hai Yang, Xiaoming Yuan. A practical trial-and-error implementation of marginal-cost pricing on networks. Journal of Industrial & Management Optimization, 2010, 6 (2) : 299-313. doi: 10.3934/jimo.2010.6.299

[10]

José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873

[11]

Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163

[12]

Stephanie Flores, Elijah Hight, Everardo Olivares-Vargas, Tamer Oraby, Jose Palacio, Erwin Suazo, Jasang Yoon. Exact and numerical solution of stochastic Burgers equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2735-2750. doi: 10.3934/dcdss.2020224

[13]

Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349

[14]

Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic & Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031

[15]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[16]

Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021036

[17]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[18]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[19]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[20]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

 Impact Factor: 

Metrics

  • PDF downloads (78)
  • HTML views (127)
  • Cited by (1)

[Back to Top]