January  2017, 4(1): 75-86. doi: 10.3934/jdg.2017005

Discretized best-response dynamics for the Rock-Paper-Scissors game

1. 

International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria

2. 

Department of Economics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

3. 

Department of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

Received  April 2016 Revised  December 2016 Published  December 2016

Discretizing a differential equation may change the qualitative behaviour drastically, even if the stepsize is small. We illustrate this by looking at the discretization of a piecewise continuous differential equation that models a population of agents playing the Rock-Paper-Scissors game. The globally asymptotically stable equilibrium of the differential equation turns, after discretization, into a repeller surrounded by an annulus shaped attracting region. In this region, more and more periodic orbits emerge as the discretization step approaches zero.

Citation: Peter Bednarik, Josef Hofbauer. Discretized best-response dynamics for the Rock-Paper-Scissors game. Journal of Dynamics & Games, 2017, 4 (1) : 75-86. doi: 10.3934/jdg.2017005
References:
[1]

P. Bednarik, Discretized Best-Response Dynamics for Cyclic Games Diplomarbeit (Master thesis), University of Vienna, Austria, 2011. Google Scholar

[2]

M. BenaimJ. Hofbauer and S. Sorin, Perturbations of set-valued dynamical systems, with applications to game theory, Dynamic Games and Applications, 2 (2012), 195-205.  doi: 10.1007/s13235-012-0040-0.  Google Scholar

[3]

G. W. Brown, Iterative solution of games by fictitious play, in Activity analysis of production and allocation (ed. T. C. Koopmans), Wiley, New York, (1951), 374–376.  Google Scholar

[4]

T. N. CasonD. Friedman and E. D. Hopkins, Cycles and instability in a rock-paper-scissors population game: A continuous time experiment, The Review of Economic Studies, 81 (2014), 112-136.  doi: 10.1093/restud/rdt023.  Google Scholar

[5]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation, Games and Economic Behaviour, 11 (1995), 279-303.  doi: 10.1006/game.1995.1052.  Google Scholar

[6]

I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.  doi: 10.2307/2938230.  Google Scholar

[7]

J. Hofbauer, Deterministic evolutionary game dynamics, in Evolutionary Game Dynamics (ed. K. Sigmund), Proceedings of Symposia in Applied Mathematics, 69, Amer. Math. Soc. (2011), 61–79. doi: 10.1090/psapm/069/2882634.  Google Scholar

[8]

J. Hofbauer and G. Iooss, A Hopf bifurcation theorem for difference equations approximating a differential equation, Monatshefte für Mathematik, 98 (1984), 99-113.  doi: 10.1007/BF01637279.  Google Scholar

[9] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[10]

J. Hofbauer and S. Sorin, Best response dynamics for continuous zero-sum games, Discrete and Continuous Dynamical Systems Series B, 6 (2006), 215-224.   Google Scholar

[11] J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.  doi: 10.1017/CBO9780511806292.  Google Scholar
[12] W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, 2010.   Google Scholar
[13]

D. SemmannH. J. Krambeck and M. Milinski, Volunteering leads to rock-paper-scissors dynamics in a public goods game, Nature, 425 (2003), 390-393.  doi: 10.1038/nature01986.  Google Scholar

[14]

Z. WangB. Xu and H. Zhou, Social cycling and conditional responses in the Rock-PaperScissors game, Scientific Reports, 4 (2014), 5830.  doi: 10.1038/srep05830.  Google Scholar

show all references

References:
[1]

P. Bednarik, Discretized Best-Response Dynamics for Cyclic Games Diplomarbeit (Master thesis), University of Vienna, Austria, 2011. Google Scholar

[2]

M. BenaimJ. Hofbauer and S. Sorin, Perturbations of set-valued dynamical systems, with applications to game theory, Dynamic Games and Applications, 2 (2012), 195-205.  doi: 10.1007/s13235-012-0040-0.  Google Scholar

[3]

G. W. Brown, Iterative solution of games by fictitious play, in Activity analysis of production and allocation (ed. T. C. Koopmans), Wiley, New York, (1951), 374–376.  Google Scholar

[4]

T. N. CasonD. Friedman and E. D. Hopkins, Cycles and instability in a rock-paper-scissors population game: A continuous time experiment, The Review of Economic Studies, 81 (2014), 112-136.  doi: 10.1093/restud/rdt023.  Google Scholar

[5]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation, Games and Economic Behaviour, 11 (1995), 279-303.  doi: 10.1006/game.1995.1052.  Google Scholar

[6]

I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.  doi: 10.2307/2938230.  Google Scholar

[7]

J. Hofbauer, Deterministic evolutionary game dynamics, in Evolutionary Game Dynamics (ed. K. Sigmund), Proceedings of Symposia in Applied Mathematics, 69, Amer. Math. Soc. (2011), 61–79. doi: 10.1090/psapm/069/2882634.  Google Scholar

[8]

J. Hofbauer and G. Iooss, A Hopf bifurcation theorem for difference equations approximating a differential equation, Monatshefte für Mathematik, 98 (1984), 99-113.  doi: 10.1007/BF01637279.  Google Scholar

[9] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[10]

J. Hofbauer and S. Sorin, Best response dynamics for continuous zero-sum games, Discrete and Continuous Dynamical Systems Series B, 6 (2006), 215-224.   Google Scholar

[11] J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.  doi: 10.1017/CBO9780511806292.  Google Scholar
[12] W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, 2010.   Google Scholar
[13]

D. SemmannH. J. Krambeck and M. Milinski, Volunteering leads to rock-paper-scissors dynamics in a public goods game, Nature, 425 (2003), 390-393.  doi: 10.1038/nature01986.  Google Scholar

[14]

Z. WangB. Xu and H. Zhou, Social cycling and conditional responses in the Rock-PaperScissors game, Scientific Reports, 4 (2014), 5830.  doi: 10.1038/srep05830.  Google Scholar

Figure 1.  Best response regions $R_i$ of the Rock-Paper-Scissors game separated by line segments $\ell_i$
Figure 2.  Constructing the outer boundary for the attractor
Figure 3.  The outer triangle $\Delta_q$ is constructed such that the $\omega$-limits of all orbits must be inside of it. The inner triangle $\Delta_p$ contains the set of points which do not have a pre-image under $F$. Thus, the region bounded by the two green triangles attracts all orbits, except the constant one at $e$
Figure 4.  Periodic orbits of periods $3n$, which exist for $h<h_n$, are shown for $n \leq 5$. The red curves correspond to the inner and outer demarkation of the attractor calculated in section 2 and $h_k$ are numerical solutions to the equation corresponding to (26)
Figure 5.  Periodic orbits of various periods together with their (numerically calculated) respective basins of attraction, for various values of the stepsize $h$. Red is the basin of attraction for period 3, dark red for period 6, light green: 9, green: 12, yellow 15, olive 18 and blue 21. The inner and outer triangles $\Delta_p$ and $\Delta_q$ are also shown (gray lines)
[1]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[2]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[3]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[4]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[5]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222

[6]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[7]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[8]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[9]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[10]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[11]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[14]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[15]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[16]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[17]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[18]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[19]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[20]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

 Impact Factor: 

Metrics

  • PDF downloads (65)
  • HTML views (143)
  • Cited by (4)

Other articles
by authors

[Back to Top]