April  2017, 4(2): 87-96. doi: 10.3934/jdg.2017006

A simple family of solutions for forest games

1. 

CIMAT, A. C., Jalisco S/N, Valenciana, C.P. 36240, Guanajuato, Gto, México

2. 

UASLP, School of Economics, Av. Pintores S/N, Burócratas del Estado, C.P. 78213, San Luis Potosí, SLP, México

* Corresponding author: Tel. +52 473 73 27155, Ext 4991

Received  April 2016 Revised  December 2016 Published  March 2017

In this paper we study TU-games where the cooperation structure among the players is modeled by a forest. Using the classical component efficiency axiom and a generalized version of the component fairness axiom we obtain a family of solutions. We show that every solution in this family is based on a process of transfers among the players, and the average tree solution belongs to the family. Finally, we obtain a solution based on the degree of the nodes and we study a set of properties satisfied by this family.

Citation: Oliver Juarez-Romero, William Olvera-Lopez, Francisco Sanchez-Sanchez. A simple family of solutions for forest games. Journal of Dynamics & Games, 2017, 4 (2) : 87-96. doi: 10.3934/jdg.2017006
References:
[1]

R. J. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J Econ theory, 36 (1985), 195-213.  doi: 10.1016/0022-0531(85)90102-4.  Google Scholar

[2]

R. BaronS. BéalE. Rémila and P. Solal, Average Tree solutions and the distribution of Harsanyi dividends, Int. J. Game Theory, 40 (2001), 331-349.  doi: 10.1007/s00182-010-0245-7.  Google Scholar

[3]

S. BéalA. LardonE. Rémila and P. Solal, The Average Tree solution for multi-choice forest games, Annals of Operations Research, 196 (2012a), 27-51.  doi: 10.1007/s10479-012-1150-1.  Google Scholar

[4]

S. BéalE. Rémila and P. Solal, Weighted component fairness for forest games, Math Social Sci, 64 (2012b), 144-151.  doi: 10.1016/j.mathsocsci.2012.03.004.  Google Scholar

[5]

K. BinmoreA. Rubinstein and A. Wolinsky, The Nash bargaining solution in economic modelling, The RAND Journal of Economics, (1986), 176-188.  doi: 10.2307/2555382.  Google Scholar

[6]

P. HeringsG. van der Laan and D. Talman, The Average Tree solution for cycle-free graph games, Game Econ Behav, 62 (2008), 77-92.  doi: 10.1016/j.geb.2007.03.007.  Google Scholar

[7]

P. HeringsG. van der LaanD. Talman and Z. Yang, The average tree solution for cooperative games with limited communication structure, Game Econ Behav, 68 (2010), 626-633.  doi: 10.1016/j.geb.2009.10.002.  Google Scholar

[8]

M. O. Jackson, Allocation rules for network games, Game Econ Behav, 51 (2005), 128-154.  doi: 10.1016/j.geb.2004.04.009.  Google Scholar

[9]

R. B. Myerson, Graphs and cooperation on games, Math Operations Res, 2 (1977), 225-229.  doi: 10.1287/moor.2.3.225.  Google Scholar

[10]

L. S. Shapley, A value for n-person game Ⅱ, Annals of Mathematics Studies, (eds. Kuhn, H.W. and Tucker, A.W.), Princeton University Press, 28 (1953), 307-317.   Google Scholar

[11]

A. van den Nouweland, Games and graphs in economic situations Ph. D. thesis, Tilburg University, The Netherlands, 1993. Google Scholar

show all references

References:
[1]

R. J. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J Econ theory, 36 (1985), 195-213.  doi: 10.1016/0022-0531(85)90102-4.  Google Scholar

[2]

R. BaronS. BéalE. Rémila and P. Solal, Average Tree solutions and the distribution of Harsanyi dividends, Int. J. Game Theory, 40 (2001), 331-349.  doi: 10.1007/s00182-010-0245-7.  Google Scholar

[3]

S. BéalA. LardonE. Rémila and P. Solal, The Average Tree solution for multi-choice forest games, Annals of Operations Research, 196 (2012a), 27-51.  doi: 10.1007/s10479-012-1150-1.  Google Scholar

[4]

S. BéalE. Rémila and P. Solal, Weighted component fairness for forest games, Math Social Sci, 64 (2012b), 144-151.  doi: 10.1016/j.mathsocsci.2012.03.004.  Google Scholar

[5]

K. BinmoreA. Rubinstein and A. Wolinsky, The Nash bargaining solution in economic modelling, The RAND Journal of Economics, (1986), 176-188.  doi: 10.2307/2555382.  Google Scholar

[6]

P. HeringsG. van der Laan and D. Talman, The Average Tree solution for cycle-free graph games, Game Econ Behav, 62 (2008), 77-92.  doi: 10.1016/j.geb.2007.03.007.  Google Scholar

[7]

P. HeringsG. van der LaanD. Talman and Z. Yang, The average tree solution for cooperative games with limited communication structure, Game Econ Behav, 68 (2010), 626-633.  doi: 10.1016/j.geb.2009.10.002.  Google Scholar

[8]

M. O. Jackson, Allocation rules for network games, Game Econ Behav, 51 (2005), 128-154.  doi: 10.1016/j.geb.2004.04.009.  Google Scholar

[9]

R. B. Myerson, Graphs and cooperation on games, Math Operations Res, 2 (1977), 225-229.  doi: 10.1287/moor.2.3.225.  Google Scholar

[10]

L. S. Shapley, A value for n-person game Ⅱ, Annals of Mathematics Studies, (eds. Kuhn, H.W. and Tucker, A.W.), Princeton University Press, 28 (1953), 307-317.   Google Scholar

[11]

A. van den Nouweland, Games and graphs in economic situations Ph. D. thesis, Tilburg University, The Netherlands, 1993. Google Scholar

[1]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[2]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[3]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[4]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[5]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[6]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[7]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[8]

Piotr Bogusław Mucha, Milan Pokorný, Ewelina Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1079-1099. doi: 10.3934/dcdss.2014.7.1079

[9]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[10]

Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic & Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017

[11]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[12]

Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033

[13]

Bogdan Kwiatkowski, Tadeusz Kwater, Anna Koziorowska. Influence of the distribution component of the magnetic induction vector on rupturing capacity of vacuum switches. Conference Publications, 2011, 2011 (Special) : 913-921. doi: 10.3934/proc.2011.2011.913

[14]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[15]

Qiaoyi Hu, Zhixin Wu, Yumei Sun. Liouville theorems for periodic two-component shallow water systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3085-3097. doi: 10.3934/dcds.2018134

[16]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[17]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[18]

Yuncheng You. Dynamics of three-component reversible Gray-Scott model. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1671-1688. doi: 10.3934/dcdsb.2010.14.1671

[19]

Yi-Kuei Lin, Cheng-Ta Yeh. Reliability optimization of component assignment problem for a multistate network in terms of minimal cuts. Journal of Industrial & Management Optimization, 2011, 7 (1) : 211-227. doi: 10.3934/jimo.2011.7.211

[20]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (5)
  • Cited by (0)

[Back to Top]