-
Previous Article
Dynamic modeling of nontargeted and targeted advertising strategies in an oligopoly
- JDG Home
- This Issue
- Next Article
A simple family of solutions for forest games
1. | CIMAT, A. C., Jalisco S/N, Valenciana, C.P. 36240, Guanajuato, Gto, México |
2. | UASLP, School of Economics, Av. Pintores S/N, Burócratas del Estado, C.P. 78213, San Luis Potosí, SLP, México |
In this paper we study TU-games where the cooperation structure among the players is modeled by a forest. Using the classical component efficiency axiom and a generalized version of the component fairness axiom we obtain a family of solutions. We show that every solution in this family is based on a process of transfers among the players, and the average tree solution belongs to the family. Finally, we obtain a solution based on the degree of the nodes and we study a set of properties satisfied by this family.
References:
[1] |
R. J. Aumann and M. Maschler,
Game theoretic analysis of a bankruptcy problem from the Talmud, J Econ theory, 36 (1985), 195-213.
doi: 10.1016/0022-0531(85)90102-4. |
[2] |
R. Baron, S. Béal, E. Rémila and P. Solal,
Average Tree solutions and the distribution of Harsanyi dividends, Int. J. Game Theory, 40 (2001), 331-349.
doi: 10.1007/s00182-010-0245-7. |
[3] |
S. Béal, A. Lardon, E. Rémila and P. Solal,
The Average Tree solution for multi-choice forest games, Annals of Operations Research, 196 (2012a), 27-51.
doi: 10.1007/s10479-012-1150-1. |
[4] |
S. Béal, E. Rémila and P. Solal,
Weighted component fairness for forest games, Math Social Sci, 64 (2012b), 144-151.
doi: 10.1016/j.mathsocsci.2012.03.004. |
[5] |
K. Binmore, A. Rubinstein and A. Wolinsky,
The Nash bargaining solution in economic modelling, The RAND Journal of Economics, (1986), 176-188.
doi: 10.2307/2555382. |
[6] |
P. Herings, G. van der Laan and D. Talman,
The Average Tree solution for cycle-free graph games, Game Econ Behav, 62 (2008), 77-92.
doi: 10.1016/j.geb.2007.03.007. |
[7] |
P. Herings, G. van der Laan, D. Talman and Z. Yang,
The average tree solution for cooperative games with limited communication structure, Game Econ Behav, 68 (2010), 626-633.
doi: 10.1016/j.geb.2009.10.002. |
[8] |
M. O. Jackson,
Allocation rules for network games, Game Econ Behav, 51 (2005), 128-154.
doi: 10.1016/j.geb.2004.04.009. |
[9] |
R. B. Myerson,
Graphs and cooperation on games, Math Operations Res, 2 (1977), 225-229.
doi: 10.1287/moor.2.3.225. |
[10] |
L. S. Shapley,
A value for n-person game Ⅱ, Annals
of Mathematics Studies, (eds. Kuhn, H.W. and Tucker, A.W.), Princeton University Press, 28 (1953), 307-317.
|
[11] |
A. van den Nouweland,
Games and graphs in economic situations Ph. D. thesis, Tilburg University, The Netherlands, 1993. |
show all references
References:
[1] |
R. J. Aumann and M. Maschler,
Game theoretic analysis of a bankruptcy problem from the Talmud, J Econ theory, 36 (1985), 195-213.
doi: 10.1016/0022-0531(85)90102-4. |
[2] |
R. Baron, S. Béal, E. Rémila and P. Solal,
Average Tree solutions and the distribution of Harsanyi dividends, Int. J. Game Theory, 40 (2001), 331-349.
doi: 10.1007/s00182-010-0245-7. |
[3] |
S. Béal, A. Lardon, E. Rémila and P. Solal,
The Average Tree solution for multi-choice forest games, Annals of Operations Research, 196 (2012a), 27-51.
doi: 10.1007/s10479-012-1150-1. |
[4] |
S. Béal, E. Rémila and P. Solal,
Weighted component fairness for forest games, Math Social Sci, 64 (2012b), 144-151.
doi: 10.1016/j.mathsocsci.2012.03.004. |
[5] |
K. Binmore, A. Rubinstein and A. Wolinsky,
The Nash bargaining solution in economic modelling, The RAND Journal of Economics, (1986), 176-188.
doi: 10.2307/2555382. |
[6] |
P. Herings, G. van der Laan and D. Talman,
The Average Tree solution for cycle-free graph games, Game Econ Behav, 62 (2008), 77-92.
doi: 10.1016/j.geb.2007.03.007. |
[7] |
P. Herings, G. van der Laan, D. Talman and Z. Yang,
The average tree solution for cooperative games with limited communication structure, Game Econ Behav, 68 (2010), 626-633.
doi: 10.1016/j.geb.2009.10.002. |
[8] |
M. O. Jackson,
Allocation rules for network games, Game Econ Behav, 51 (2005), 128-154.
doi: 10.1016/j.geb.2004.04.009. |
[9] |
R. B. Myerson,
Graphs and cooperation on games, Math Operations Res, 2 (1977), 225-229.
doi: 10.1287/moor.2.3.225. |
[10] |
L. S. Shapley,
A value for n-person game Ⅱ, Annals
of Mathematics Studies, (eds. Kuhn, H.W. and Tucker, A.W.), Princeton University Press, 28 (1953), 307-317.
|
[11] |
A. van den Nouweland,
Games and graphs in economic situations Ph. D. thesis, Tilburg University, The Netherlands, 1993. |
[1] |
Meiling Yang, Yongsheng Li, Zhijun Qiao. Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2475-2493. doi: 10.3934/dcds.2020122 |
[2] |
Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719 |
[3] |
Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166 |
[4] |
Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062 |
[5] |
Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459 |
[6] |
Shouming Zhou, Shanshan Zheng. Qualitative analysis for a new generalized 2-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4659-4675. doi: 10.3934/dcdss.2021132 |
[7] |
Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279 |
[8] |
Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373 |
[9] |
Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 |
[10] |
Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072 |
[11] |
Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics and Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555 |
[12] |
Beatris Adriana Escobedo-Trujillo, Alejandro Alaffita-Hernández, Raquiel López-Martínez. Constrained stochastic differential games with additive structure: Average and discount payoffs. Journal of Dynamics and Games, 2018, 5 (2) : 109-141. doi: 10.3934/jdg.2018008 |
[13] |
Piotr Bogusław Mucha, Milan Pokorný, Ewelina Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1079-1099. doi: 10.3934/dcdss.2014.7.1079 |
[14] |
Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827 |
[15] |
Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic and Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017 |
[16] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems and Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[17] |
Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160 |
[18] |
Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041 |
[19] |
Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic and Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305 |
[20] |
Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]