April  2017, 4(2): 149-173. doi: 10.3934/jdg.2017009

Nash and social welfare impact in an international trade model

1. 

Department of Mathematics and LIAAD-INESC, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687,4169-007 Porto, Portugal

2. 

IMPA, Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, RJ 22460-320, Rio de Janeiro, Brasil

Received  December 2015 Revised  January 2017 Published  March 2017

We study a classic international trade model consisting of a strategic game in the tariffs of the governments. The model is a two-stage game where, at the first stage, governments of each country use their welfare functions to choose their tariffs either (ⅰ) competitively (Nash equilibrium) or (ⅱ) cooperatively (social optimum). In the second stage, firms choose competitively (Nash) their home and export quantities. We compare the competitive (Nash) tariffs with the cooperative (social) tariffs and we classify the game type according to the coincidence or not of these equilibria as a social equilibrium, a prisoner's dilemma or a lose-win dilemma.

Citation: Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics & Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009
References:
[1]

K. Bagwell and R. Staiger, A theory of managed trade, American Economic Review, 80 (1990), 779-795. Google Scholar

[2]

K. Bagwell and R. Staiger, Enforcement, private political pressure, and the GAT/WTO escape clause, Journal of Legal Studies,, 34 (2005), 471-513. Google Scholar

[3]

N. Banik, F. A. Ferreira, J. Martins and A. A. Pinto, An Economical Model for Dumping by Dumping in a Cournot Model, chapter in "Dynamics, Games and Science Ⅱ: DYNA 2008, in Honour of Maurício Peixoto and David Rand", editors: M. M. Peixoto, A. A. Pinto and D. A. Rand, pp. 141-154, Springer, 2011. doi: 10.1007/978-3-642-14788-3_11. Google Scholar

[4]

J. A. Brander, Intra-industry trade in identical commodities, Journal of International Economics, 11 (1981), 1-14. Google Scholar

[5]

J. A. Brander and B. J. Spencer, Export subsidies and international market share rivalry, Journal of International Economics, 18 (1985), 83-100. Google Scholar

[6]

J. I. BulowJ. D. Geanakoplos and P. D. Klemperer, Multi-market oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511. Google Scholar

[7]

M. ChoubdarJ. P. Zubelli and A. A. Pinto, Nash and Social Welfare Impact in International Trade, Recent Advances in Applied Economics, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 23-26. Google Scholar

[8]

M. ChoubdarE. FariasF. A. Ferreira and A. A. Pinto, Uncertainty costs on an international duopoly with tariffs, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 13-16. Google Scholar

[9]

A. Dixit, International trade policy for oligopolistic industries, Economic Journal, 94 (1984), 1-16. Google Scholar

[10]

A. Dixit, Strategic aspects of trade policy, in Bewley, T. (Editor), Advances in Economic Theory, Cambridge University Press, 329–362.Google Scholar

[11]

A. Dixit and G. Grossman, Targed export promotion with several oligopolistic industries, Journal of International Economics, 21 (1986), 233-249. Google Scholar

[12]

G. Eaton and G. Grossman, Optimal trade and industrial policy under oligopoly, Quarterly Journal of Economics, 101 (1984), 383-406. doi: 10.2307/1891121. Google Scholar

[13]

F. A. Ferreira, Applications of Mathematics to Industrial Organization, Ph. D. Thesis, Universidade do Porto, Portugal, 2007.Google Scholar

[14]

F. A. Ferreira, F. Ferreira, M. Ferreira and A. A. Pinto, Quantity competition in a differentiated duopoly, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics. Springer Science+Business Media B. V. , (2008), 365–374.Google Scholar

[15]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Flexibility in Stackelberg leadership, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2008), 399–405.Google Scholar

[16]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Bayesian price leadership, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 371–379.Google Scholar

[17]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 359–369.Google Scholar

[18]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Uncertainty on an asymmetric duopoly, Progress in Industrial Mathematics at ECMI 2006, Proceedings 14th European Conference on Mathematics for Industry, Madrid, Spain, July 10-14. Springer, Berlin (2006) to appear.Google Scholar

[19]

E. O'N. Fisher and C. A. Wilson, Price competition between two international firms facing tariffs, International Journal of Industrial Organization, 3 (1995), 67-87. Google Scholar

[20]

R. Gibbons, A Primer in Game Theory, Pearson Prentice Hall, Harlow, 1992.Google Scholar

[21]

G. M. Grossman, Strategic export promotion: A critique, Chapter 3 in: Strategic Trade Policy and the New International Economics, P. R. Krugman (editor), MIT Press, Cambridge MA, (1986), 47–68.Google Scholar

[22]

G. V. Haberler, The Theory of International Trade with its Application to Commercial Policy, Macmillan, New York, 1937.Google Scholar

[23]

E. Helpman, Increasing Returns, Imperfect Markets, and Trade Theory, Jones, R. W. , Kenen, P. B. (eds.): Handbook of International Economics, 1 North Holland Press, Amesterdam, 1984, Chapter 7.Google Scholar

[24]

J. -M. M. Kilolo, Country Size, Trade Liberalization and Transfers, MPRA Paper, University Library of Munich, Germany, 2013.Google Scholar

[25]

K. Krishna, Trade restrictions as facilitating practices, Journal of International Economics, 26 (1989), 251-270. Google Scholar

[26]

P.-C. Liao, Rivalry between exporting countries and an importing country under incomplete information, Academia Economic Papers, 32 (1990), 605-630. Google Scholar

[27]

N. Limao and K. Saggi, Tariff retaliation versus financial compensation in the enforcement of international trade agreements, Journal of International Economics, 76 (2008), 48-60. Google Scholar

[28]

N. Lim'ao and K. Saggi, Size inequality, coordination externalities and international trade agreements, y, coordination externalities and international trade agreements,, 63 (2013), 10-27. Google Scholar

[29]

J. Martins, N. Banik and A. A. Pinto, A Repeated Strategy for Dumping, to appear in Discrete Dynamical Systems and Applications, ICDEA 2012, editors: Lluís Alseda, Jim M. Cushing, Saber Elaydi and A. A. Pinto, Springer. doi: 10.1007/978-3-662-52927-0_11. Google Scholar

[30]

J. Martins and A. A. Pinto, Deviation from collusion with and without dumping, to appear in Modeling, Dynamics, Optimization and Bioeconomics Ⅱ, editors: A. A. Pinto and D. Zilberman, Springer.Google Scholar

[31]

J. McMillan, Game Theory in International Economics, Harwood Academic Publishers, Chur, Switzerland, 1986. doi: 10.1080/00036846900000024. Google Scholar

[32]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R & D strategies of the firms, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 415–423.Google Scholar

[33]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Investing to survive in a duopoly model, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 407–414.Google Scholar

[34]

B. J. Spencer and J. A. Brander, International R & D rivalry and industrial strategy, Review of Economic Studies, 50 (1983), 707-722. doi: 10.3386/w1192. Google Scholar

[35]

R. Staiger, International rules and institutions for trade policy, in: Grossman, Gene, Rogoff, Kenneth (Eds.): Handbook of international economics, vol. 3, Elsevier, North-Holland, 1495–1551.Google Scholar

show all references

References:
[1]

K. Bagwell and R. Staiger, A theory of managed trade, American Economic Review, 80 (1990), 779-795. Google Scholar

[2]

K. Bagwell and R. Staiger, Enforcement, private political pressure, and the GAT/WTO escape clause, Journal of Legal Studies,, 34 (2005), 471-513. Google Scholar

[3]

N. Banik, F. A. Ferreira, J. Martins and A. A. Pinto, An Economical Model for Dumping by Dumping in a Cournot Model, chapter in "Dynamics, Games and Science Ⅱ: DYNA 2008, in Honour of Maurício Peixoto and David Rand", editors: M. M. Peixoto, A. A. Pinto and D. A. Rand, pp. 141-154, Springer, 2011. doi: 10.1007/978-3-642-14788-3_11. Google Scholar

[4]

J. A. Brander, Intra-industry trade in identical commodities, Journal of International Economics, 11 (1981), 1-14. Google Scholar

[5]

J. A. Brander and B. J. Spencer, Export subsidies and international market share rivalry, Journal of International Economics, 18 (1985), 83-100. Google Scholar

[6]

J. I. BulowJ. D. Geanakoplos and P. D. Klemperer, Multi-market oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511. Google Scholar

[7]

M. ChoubdarJ. P. Zubelli and A. A. Pinto, Nash and Social Welfare Impact in International Trade, Recent Advances in Applied Economics, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 23-26. Google Scholar

[8]

M. ChoubdarE. FariasF. A. Ferreira and A. A. Pinto, Uncertainty costs on an international duopoly with tariffs, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 13-16. Google Scholar

[9]

A. Dixit, International trade policy for oligopolistic industries, Economic Journal, 94 (1984), 1-16. Google Scholar

[10]

A. Dixit, Strategic aspects of trade policy, in Bewley, T. (Editor), Advances in Economic Theory, Cambridge University Press, 329–362.Google Scholar

[11]

A. Dixit and G. Grossman, Targed export promotion with several oligopolistic industries, Journal of International Economics, 21 (1986), 233-249. Google Scholar

[12]

G. Eaton and G. Grossman, Optimal trade and industrial policy under oligopoly, Quarterly Journal of Economics, 101 (1984), 383-406. doi: 10.2307/1891121. Google Scholar

[13]

F. A. Ferreira, Applications of Mathematics to Industrial Organization, Ph. D. Thesis, Universidade do Porto, Portugal, 2007.Google Scholar

[14]

F. A. Ferreira, F. Ferreira, M. Ferreira and A. A. Pinto, Quantity competition in a differentiated duopoly, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics. Springer Science+Business Media B. V. , (2008), 365–374.Google Scholar

[15]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Flexibility in Stackelberg leadership, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2008), 399–405.Google Scholar

[16]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Bayesian price leadership, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 371–379.Google Scholar

[17]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 359–369.Google Scholar

[18]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Uncertainty on an asymmetric duopoly, Progress in Industrial Mathematics at ECMI 2006, Proceedings 14th European Conference on Mathematics for Industry, Madrid, Spain, July 10-14. Springer, Berlin (2006) to appear.Google Scholar

[19]

E. O'N. Fisher and C. A. Wilson, Price competition between two international firms facing tariffs, International Journal of Industrial Organization, 3 (1995), 67-87. Google Scholar

[20]

R. Gibbons, A Primer in Game Theory, Pearson Prentice Hall, Harlow, 1992.Google Scholar

[21]

G. M. Grossman, Strategic export promotion: A critique, Chapter 3 in: Strategic Trade Policy and the New International Economics, P. R. Krugman (editor), MIT Press, Cambridge MA, (1986), 47–68.Google Scholar

[22]

G. V. Haberler, The Theory of International Trade with its Application to Commercial Policy, Macmillan, New York, 1937.Google Scholar

[23]

E. Helpman, Increasing Returns, Imperfect Markets, and Trade Theory, Jones, R. W. , Kenen, P. B. (eds.): Handbook of International Economics, 1 North Holland Press, Amesterdam, 1984, Chapter 7.Google Scholar

[24]

J. -M. M. Kilolo, Country Size, Trade Liberalization and Transfers, MPRA Paper, University Library of Munich, Germany, 2013.Google Scholar

[25]

K. Krishna, Trade restrictions as facilitating practices, Journal of International Economics, 26 (1989), 251-270. Google Scholar

[26]

P.-C. Liao, Rivalry between exporting countries and an importing country under incomplete information, Academia Economic Papers, 32 (1990), 605-630. Google Scholar

[27]

N. Limao and K. Saggi, Tariff retaliation versus financial compensation in the enforcement of international trade agreements, Journal of International Economics, 76 (2008), 48-60. Google Scholar

[28]

N. Lim'ao and K. Saggi, Size inequality, coordination externalities and international trade agreements, y, coordination externalities and international trade agreements,, 63 (2013), 10-27. Google Scholar

[29]

J. Martins, N. Banik and A. A. Pinto, A Repeated Strategy for Dumping, to appear in Discrete Dynamical Systems and Applications, ICDEA 2012, editors: Lluís Alseda, Jim M. Cushing, Saber Elaydi and A. A. Pinto, Springer. doi: 10.1007/978-3-662-52927-0_11. Google Scholar

[30]

J. Martins and A. A. Pinto, Deviation from collusion with and without dumping, to appear in Modeling, Dynamics, Optimization and Bioeconomics Ⅱ, editors: A. A. Pinto and D. Zilberman, Springer.Google Scholar

[31]

J. McMillan, Game Theory in International Economics, Harwood Academic Publishers, Chur, Switzerland, 1986. doi: 10.1080/00036846900000024. Google Scholar

[32]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R & D strategies of the firms, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 415–423.Google Scholar

[33]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Investing to survive in a duopoly model, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 407–414.Google Scholar

[34]

B. J. Spencer and J. A. Brander, International R & D rivalry and industrial strategy, Review of Economic Studies, 50 (1983), 707-722. doi: 10.3386/w1192. Google Scholar

[35]

R. Staiger, International rules and institutions for trade policy, in: Grossman, Gene, Rogoff, Kenneth (Eds.): Handbook of international economics, vol. 3, Elsevier, North-Holland, 1495–1551.Google Scholar

Figure 1.  The Welfare Game Type: Green -$\textbf{L}_j\textbf{W}_i$; Red -PD; Yellow -$\textbf{L}_i\textbf{W}_j$
Table 1.  The Nash (Social) tariffs for the home quantities, total quantity in the market, inverse demand, custom revenue and custom surplus, resulting in a social equilibrium. $h$ -Home quantities; $Q$ -Aggregate quantity in each country; $p$ -Inverse demand; $CR$ -Custom revenue; $CS$ -Consumer surplus
SE game
Economic quantity $h$ $e$ $Q $ $p$ $CR$ $CS$
Nash (Social) tariff of country i $T_i$ 0 0 $T_i$ $T_i / 2 $ 0
Nash (Social) tariff of country j $T_j$ 0 0 $T_j$ $T_j/2$ 0
SE game
Economic quantity $h$ $e$ $Q $ $p$ $CR$ $CS$
Nash (Social) tariff of country i $T_i$ 0 0 $T_i$ $T_i / 2 $ 0
Nash (Social) tariff of country j $T_j$ 0 0 $T_j$ $T_j/2$ 0
Table 2.  Comparing total quantities of the two countries with Nash tariffs and social tariffs with different cost similarities and concluding the game type
Total quantities $(q_i,q_j)$ produced by the firms
Condition Nash tariffs Social tariffs Game type
If $2T_j < T_i$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_i\textbf{W}_j$
If $T_i/2 \leq T_j\leq 2T_i$ $(T_i,T_j)$ $(0,0)$ PD
If $2T_i <T_j$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_j\textbf{W}_i$
Total quantities $(q_i,q_j)$ produced by the firms
Condition Nash tariffs Social tariffs Game type
If $2T_j < T_i$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_i\textbf{W}_j$
If $T_i/2 \leq T_j\leq 2T_i$ $(T_i,T_j)$ $(0,0)$ PD
If $2T_i <T_j$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_j\textbf{W}_i$
Table 3.  Comparing profits of the firms of the two countries with Nash tariffs and social tariffs, where $H_i$ and $H_j$ are the tax-free home production indexes
Profits $(\pi_i,\pi_j)$ of the firms
Condition Nash tariffs Social tariffs Game type
If $H_i < 3/5$ $(T_i,T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
If $H_i > 3/5$ and $H_j > 3/5$ $(T_i,T_j)$ $(T_i,T_j)$ SE
If $H_j < 3/5$ $(T_i,T_j)$ $(T_i,0)$ $\textbf{L}_j\textbf{W}_i$
Profits $(\pi_i,\pi_j)$ of the firms
Condition Nash tariffs Social tariffs Game type
If $H_i < 3/5$ $(T_i,T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
If $H_i > 3/5$ and $H_j > 3/5$ $(T_i,T_j)$ $(T_i,T_j)$ SE
If $H_j < 3/5$ $(T_i,T_j)$ $(T_i,0)$ $\textbf{L}_j\textbf{W}_i$
Table 4.  Comparing welfares of the two countries with Nash tariffs and social tariffs where $H_i$ and $H_j$ are the tax-free home production indexes satisfying $0 < H_i < 2/3 < H_j < 1$
Welfares $(W_i,W_j) $ of the countries
Condition Nash tariffs Social tariffs Game type
$ H_j\geq 5/6 $ $( A_{W,i}, T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
$4/5< H_j< 5/6$ $(A_{W,i}, A_{W,j})$ $(0, B_{W_S,j})$ LW or PD
$H_j \leq 4/5$ $(A_{W,i}, A_{W,j})$ $(0,0)$ LW or PD
Welfares $(W_i,W_j) $ of the countries
Condition Nash tariffs Social tariffs Game type
$ H_j\geq 5/6 $ $( A_{W,i}, T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
$4/5< H_j< 5/6$ $(A_{W,i}, A_{W,j})$ $(0, B_{W_S,j})$ LW or PD
$H_j \leq 4/5$ $(A_{W,i}, A_{W,j})$ $(0,0)$ LW or PD
[1]

Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381

[2]

Rafael Diaz, Laura Gomez. Indirect influences in international trade. Networks & Heterogeneous Media, 2015, 10 (1) : 149-165. doi: 10.3934/nhm.2015.10.149

[3]

Pau Erola, Albert Díaz-Guilera, Sergio Gómez, Alex Arenas. Modeling international crisis synchronization in the world trade web. Networks & Heterogeneous Media, 2012, 7 (3) : 385-397. doi: 10.3934/nhm.2012.7.385

[4]

Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141

[5]

Maximiliano Fernandez, Javier Galeano, Cesar Hidalgo. Bipartite networks provide new insights on international trade markets. Networks & Heterogeneous Media, 2012, 7 (3) : 399-413. doi: 10.3934/nhm.2012.7.399

[6]

Ethan Akin. Good strategies for the Iterated Prisoner's Dilemma: Smale vs. Markov. Journal of Dynamics & Games, 2017, 4 (3) : 217-253. doi: 10.3934/jdg.2017014

[7]

Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial & Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629

[8]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[9]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[10]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[11]

Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i

[12]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019036

[13]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

[14]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[15]

Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019060

[16]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[17]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[18]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[19]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-29. doi: 10.3934/jimo.2019040

[20]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

 Impact Factor: 

Metrics

  • PDF downloads (12)
  • HTML views (2)
  • Cited by (0)

[Back to Top]